cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A001790 Numerators in expansion of 1/sqrt(1-x).

Original entry on oeis.org

1, 1, 3, 5, 35, 63, 231, 429, 6435, 12155, 46189, 88179, 676039, 1300075, 5014575, 9694845, 300540195, 583401555, 2268783825, 4418157975, 34461632205, 67282234305, 263012370465, 514589420475, 8061900920775, 15801325804719
Offset: 0

Views

Author

Keywords

Comments

Also numerator of e(n-1,n-1) (see Maple line).
Leading coefficient of normalized Legendre polynomial.
Common denominator of expansions of powers of x in terms of Legendre polynomials P_n(x).
Also the numerator of binomial(2*n,n)/2^n. - T. D. Noe, Nov 29 2005
This sequence gives the numerators of the Maclaurin series of the Lorentz factor (see Wikipedia link) of 1/sqrt(1-b^2) = dt/dtau where b=u/c is the velocity in terms of the speed of light c, u is the velocity as observed in the reference frame where time t is measured and tau is the proper time. - Stephen Crowley, Apr 03 2007
Truncations of rational expressions like those given by the numerator operator are artifacts in integer formulas and have many disadvantages. A pure integer formula follows. Let n$ denote the swinging factorial and sigma(n) = number of '1's in the base-2 representation of floor(n/2). Then a(n) = (2*n)$ / sigma(2*n) = A056040(2*n) / A060632(2*n+1). Simply said: this sequence is the odd part of the swinging factorial at even indices. - Peter Luschny, Aug 01 2009
It appears that a(n) = A060818(n)*A001147(n)/A000142(n). - James R. Buddenhagen, Jan 20 2010
The convolution of sequence binomial(2*n,n)/4^n with itself is the constant sequence with all terms = 1.
a(n) equals the denominator of Hypergeometric2F1[1/2, n, 1 + n, -1] (see Mathematica code below). - John M. Campbell, Jul 04 2011
a(n) = numerator of (1/Pi)*Integral_{x=-oo..+oo} 1/(x^2-2*x+2)^n dx. - Leonid Bedratyuk, Nov 17 2012
a(n) = numerator of the mean value of cos(x)^(2*n) from x = 0 to 2*Pi. - Jean-François Alcover, Mar 21 2013
Constant terms for normalized Legendre polynomials. - Tom Copeland, Feb 04 2016
From Ralf Steiner, Apr 07 2017: (Start)
By analytic continuation to the entire complex plane there exist regularized values for divergent sums:
a(n)/A060818(n) = (-2)^n*sqrt(Pi)/(Gamma(1/2 - n)*Gamma(1 + n)).
Sum_{k>=0} a(k)/A060818(k) = -i.
Sum_{k>=0} (-1)^k*a(k)/A060818(k) = 1/sqrt(3).
Sum_{k>=0} (-1)^(k+1)*a(k)/A060818(k) = -1/sqrt(3).
a(n)/A046161(n) = (-1)^n*sqrt(Pi)/(Gamma(1/2 - n)*Gamma(1 + n)).
Sum_{k>=0} (-1)^k*a(k)/A046161(k) = 1/sqrt(2).
Sum_{k>=0} (-1)^(k+1)*a(k)/A046161(k) = -1/sqrt(2). (End)
a(n) = numerator of (1/Pi)*Integral_{x=-oo..+oo} 1/(x^2+1)^n dx. (n=1 is the Cauchy distribution.) - Harry Garst, May 26 2017
Let R(n, d) = (Product_{j prime to d} Pochhammer(j / d, n)) / n!. Then the numerators of R(n, 2) give this sequence and the denominators are A046161. For d = 3 see A273194/A344402. - Peter Luschny, May 20 2021
Using WolframAlpha, it appears a(n) gives the numerator in the residues of f(z) = 2z choose z at odd negative half integers. E.g., the residues of f(z) at z = -1/2, -3/2, -5/2 are 1/(2*Pi), 1/(16*Pi), and 3/(256*Pi) respectively. - Nicholas Juricic, Mar 31 2022
a(n) is the numerator of (1/Pi) * Integral_{x=-oo..+oo} sech(x)^(2*n+1) dx. The corresponding denominator is A046161. - Mohammed Yaseen, Jul 29 2023
a(n) is the numerator of (1/Pi) * Integral_{x=0..Pi/2} sin(x)^(2*n) dx. The corresponding denominator is A101926(n). - Mohammed Yaseen, Sep 19 2023

Examples

			1, 1, 3/2, 5/2, 35/8, 63/8, 231/16, 429/16, 6435/128, 12155/128, 46189/256, ...
binomial(2*n,n)/4^n => 1, 1/2, 3/8, 5/16, 35/128, 63/256, 231/1024, 429/2048, 6435/32768, ...
		

References

  • P. J. Davis, Interpolation and Approximation, Dover Publications, 1975, p. 372.
  • W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, 2nd ed. New York: Wiley, 1968; Chap. III, Eq. 4.1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 6, equation 6:14:6 at page 51.
  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 102.

Crossrefs

Cf. A060818 (denominator of binomial(2*n,n)/2^n), A061549 (denominators).
Cf. A123854 (denominators).
Cf. A161198 (triangle of coefficients for (1-x)^((-1-2*n)/2)).
Cf. A163590 (odd part of the swinging factorial).
Cf. A001405.
First column and diagonal 1 of triangle A100258.
Bisection of A036069.
Bisections give A061548 and A063079.
Inverse Moebius transform of A180403/A046161.
Numerators of [x^n]( (1-x)^(p/2) ): A161202 (p=5), A161200 (p=3), A002596 (p=1), this sequence (p=-1), A001803 (p=-3), A161199 (p=-5), A161201 (p=-7).

Programs

  • Magma
    A001790:= func< n | Numerator((n+1)*Catalan(n)/4^n) >;
    [A001790(n): n in [0..40]]; // G. C. Greubel, Sep 23 2024
  • Maple
    e := proc(l,m) local k; add(2^(k-2*m)*binomial(2*m-2*k,m-k)*binomial(m+k,m)*binomial(k,l),k=l..m); end;
    # From Peter Luschny, Aug 01 2009: (Start)
    swing := proc(n) option remember; if n = 0 then 1 elif irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
    sigma := n -> 2^(add(i,i=convert(iquo(n,2),base,2))):
    a := n -> swing(2*n)/sigma(2*n); # (End)
    A001790 := proc(n) binomial(2*n, n)/4^n ; numer(%) ; end proc : # R. J. Mathar, Jan 18 2013
  • Mathematica
    Numerator[ CoefficientList[ Series[1/Sqrt[(1 - x)], {x, 0, 25}], x]]
    Table[Denominator[Hypergeometric2F1[1/2, n, 1 + n, -1]], {n, 0, 34}]   (* John M. Campbell, Jul 04 2011 *)
    Numerator[Table[(-2)^n*Sqrt[Pi]/(Gamma[1/2 - n]*Gamma[1 + n]),{n,0,20}]] (* Ralf Steiner, Apr 07 2017 *)
    Numerator[Table[Binomial[2n,n]/2^n, {n, 0, 25}]] (* Vaclav Kotesovec, Apr 07 2017 *)
    Table[Numerator@LegendreP[2 n, 0]*(-1)^n, {n, 0, 25}] (* Andres Cicuttin, Jan 22 2018 *)
    A = {1}; Do[A = Append[A, 2^IntegerExponent[n, 2]*(2*n - 1)*A[[n]]/n], {n, 1, 25}]; Print[A] (* John Lawrence, Jul 17 2020 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( pollegendre(n), n) * 2^valuation((n\2*2)!, 2))};
    
  • PARI
    a(n)=binomial(2*n,n)>>hammingweight(n); \\ Gleb Koloskov, Sep 26 2021
    
  • Sage
    # uses[A000120]
    @CachedFunction
    def swing(n):
        if n == 0: return 1
        return swing(n-1)*n if is_odd(n) else 4*swing(n-1)/n
    A001790 = lambda n: swing(2*n)/2^A000120(2*n)
    [A001790(n) for n in (0..25)]  # Peter Luschny, Nov 19 2012
    

Formula

a(n) = numerator( binomial(2*n,n)/4^n ) (cf. A046161).
a(n) = A000984(n)/A001316(n) where A001316(n) is the highest power of 2 dividing C(2*n, n) = A000984(n). - Benoit Cloitre, Jan 27 2002
a(n) = denominator of (2^n/binomial(2*n,n)). - Artur Jasinski, Nov 26 2011
a(n) = numerator(L(n)), with rational L(n):=binomial(2*n,n)/2^n. L(n) is the leading coefficient of the Legendre polynomial P_n(x).
L(n) = (2*n-1)!!/n! with the double factorials (2*n-1)!! = A001147(n), n >= 0.
Numerator in (1-2t)^(-1/2) = 1 + t + (3/2)t^2 + (5/2)t^3 + (35/8)t^4 + (63/8)t^5 + (231/16)t^6 + (429/16)t^7 + ... = 1 + t + 3*t^2/2! + 15*t^3/3! + 105*t^4/4! + 945*t^5/5! + ... = e.g.f. for double factorials A001147 (cf. A094638). - Tom Copeland, Dec 04 2013
From Ralf Steiner, Apr 08 2017: (Start)
a(n)/A061549(n) = (-1/4)^n*sqrt(Pi)/(Gamma(1/2 - n)*Gamma(1 + n)).
Sum_{k>=0} a(k)/A061549(k) = 2/sqrt(3).
Sum_{k>=0} (-1)^k*a(k)/A061549(k) = 2/sqrt(5).
Sum_{k>=0} (-1)^(k+1)*a(k)/A061549(k) = -2/sqrt(5).
a(n)/A123854(n) = (-1/2)^n*sqrt(Pi)/(gamma(1/2 - n)*gamma(1 + n)).
Sum_{k>=0} a(k)/A123854(k) = sqrt(2).
Sum_{k>=0} (-1)^k*a(k)/A123854(k) = sqrt(2/3).
Sum_{k>=0} (-1)^(k+1)*a(k)/A123854(k) = -sqrt(2/3). (End)
a(n) = 2^A007814(n)*(2*n-1)*a(n-1)/n. - John Lawrence, Jul 17 2020
Sum_{k>=0} A086117(k+3)/a(k+2) = Pi. - Antonio Graciá Llorente, Aug 31 2024
a(n) = A001803(n)/(2*n+1). - G. C. Greubel, Sep 23 2024

A061549 Denominator of probability that there is no error when average of n numbers is computed, assuming errors of +1, -1 are possible and they each occur with p=1/4.

Original entry on oeis.org

1, 8, 128, 1024, 32768, 262144, 4194304, 33554432, 2147483648, 17179869184, 274877906944, 2199023255552, 70368744177664, 562949953421312, 9007199254740992, 72057594037927936, 9223372036854775808, 73786976294838206464, 1180591620717411303424, 9444732965739290427392
Offset: 0

Views

Author

Leah Schmelzer (leah2002(AT)mit.edu), May 16 2001

Keywords

Comments

We observe that b(n) = log(a(n))/log(2) = A120738(n). Furthermore c(n+1) = b(n+1)-b(n) = A090739(n+1) and c(n+1)-3 = A007814(n+1) for n>=0. - Johannes W. Meijer, Jul 06 2009
Using WolframAlpha, it appears that 2*a(n) gives the coefficients of Pi in the denominators of the residues of f(z) = 2z choose z at odd negative half integers. E.g., the residues of f(z) at z = -1/2, -3/2, -5/2 are 1/(2*Pi), 1/(16*Pi), and 3/(256*Pi) respectively. - Nicholas Juricic, Mar 31 2022

Examples

			For n=1, the binomial(2*n-1/2, -1/2) yields the term 3/8. The denominator of this term is 8, which is the second term of the sequence.
		

Crossrefs

Bisection of A046161.
Appears in A162448.

Programs

  • Magma
    A061549:= func< n | 2^(4*n-(&+Intseq(2*n, 2))) >;
    [A061549(n): n in [0..30]]; // G. C. Greubel, Oct 20 2024
  • Maple
    seq(denom(binomial(2*n-1/2, -1/2)), n=0..20);
  • Mathematica
    Table[Denominator[(4*n)!/(2^(4*n)*(2*n)!^2) ], {n, 0, 20}] (* Indranil Ghosh, Mar 11 2017 *)
  • PARI
    for(n=0, 20, print1(denominator((4*n)!/(2^(4*n)*(2*n)!^2)),", ")) \\ Indranil Ghosh, Mar 11 2017
    
  • Python
    import math
    f = math.factorial
    def A061549(n): return (2**(4*n)*f(2*n)**2) // math.gcd(f(4*n), (2**(4*n)*f(2*n)**2)) # Indranil Ghosh, Mar 11 2017
    
  • Sage
    # uses[A000120]
    def a(n): return 1 << (4*n - A000120(n))
    [a(n) for n in (0..19)]  # Peter Luschny, Dec 02 2012
    

Formula

a(n) = denominator of binomial(2*n-1/2, -1/2).
a(n) are denominators of coefficients of 1/(sqrt(1+x)-sqrt(1-x)) power series. - Benoit Cloitre, Mar 12 2002
a(n) = 16^n/A001316(n). - Paul Barry, Jun 29 2006
a(n) = denom((4*n)!/(2^(4*n)*(2*n)!^2)). - Johannes W. Meijer, Jul 06 2009
a(n) = abs(A067624(n)/A117972(n)). - Johannes W. Meijer, Jul 06 2009

Extensions

More terms from Asher Auel, May 20 2001

A063079 Bisection of A001790.

Original entry on oeis.org

1, 5, 63, 429, 12155, 88179, 1300075, 9694845, 583401555, 4418157975, 67282234305, 514589420475, 15801325804719, 121683714103007, 1879204156221315, 14544636039226909, 1804857108504066435
Offset: 1

Views

Author

N. J. A. Sloane, Aug 07 2001

Keywords

Crossrefs

Cf. A001790, A060818, A334907. Other bisection gives A061548.

Programs

  • Maple
    seq(numer(binomial(2*n-3/2,-1/2)), n=1..20);
  • Mathematica
    Numerator[Binomial[2Range[20]-3/2,-(1/2)]] (* Harvey P. Dale, Feb 27 2012 *)

Formula

Numerators of binomial(2*n-3/2, -1/2).
Because A334907(n)/n! = a(n+1)/A060818(n) for n >= 0, the o.g.f. of a(n+1)/A060818(n), for n >= 0, is (sqrt(1 + sqrt(8*s)) - sqrt(1 - sqrt(8*s)))/sqrt(8*s * (1 - 8*s)), which is the e.g.f. of A334907 (see the link above for a proof). - Petros Hadjicostas, May 16 2020

Extensions

More terms from Vladeta Jovovic, Aug 07 2001

A069954 a(n) = binomial(2^(n+1), 2^n)/2 = binomial(2^(n+1) - 1, 2^n) = binomial(2^(n+1) - 1, 2^n-1).

Original entry on oeis.org

1, 3, 35, 6435, 300540195, 916312070471295267, 11975573020964041433067793888190275875, 2884329411724603169044874178931143443870105850987581016304218283632259375395
Offset: 0

Views

Author

Benoit Cloitre, Apr 27 2002

Keywords

Comments

Terms are always odd. a(1) = A061548(2), a(2) = A061548(3), a(3) = A061548(5), a(4) = A061548(9), a(5) = A061548(17), ... Hence it seems that a(n) = A061548(A000051(n)).
C(2*k, k)/2 = C(2*k-1, k) = C(2*k-1, k-1) is odd if and only if k = 2^n. - Michael Somos, Mar 12 2014

Examples

			C(2,1)/2 = C(1,0) = C(1,1) = 1. C(4,2)/2 = C(3,1) = C(3,2) = 3. C(8,4)/2 = C(7,3) = C(7,4) = 35. - _Michael Somos_, Mar 12 2014
		

Crossrefs

Programs

  • Magma
    [Binomial(2^(n+1)-1, 2^n-1): n in [0..10]]; // Vincenzo Librandi, Mar 14 2014
    
  • Mathematica
    Table[Binomial[2^(n+1) -1, 2^n -1], {n, 0, 10}] (* Vincenzo Librandi, Mar 14 2014 *)
  • SageMath
    [binomial(2^(n+1) -1, 2^n) for n in (0..9)] # G. C. Greubel, Aug 16 2022

Formula

From Harry Richman, May 18 2023: (Start)
a(n) = A001790(2^n).
a(n) = 1/2 * A000984(2^n).
a(n) = 1/2 * (2^n + 1) * A000108(2^n).
log log a(n) ~ (log 2) * (n + 1) + log log 2 + O(n / 2^n). (End)
a(n) = A037293(n+1) / 2. - Tilman Piesk, Oct 11 2024

Extensions

a(0) = 1 added by Michael Somos, Mar 12 2014

A295074 Numerator of the coefficient of the n-th term of the power expansion near x = 0 of sqrt(1+1/sqrt(1-x))/sqrt(2).

Original entry on oeis.org

1, 11, 69, 1843, 12767, 181215, 1308365, 76546627, 565400891, 8419185989, 63092292851, 1901486819127, 14392588079947, 218735248662407, 1667806937019357, 204072937168787299, 1564753338846234067, 24051971232321138025, 185239367598020901335, 5717329190017842492029
Offset: 1

Views

Author

Karol A. Penson, Apr 16 2018

Keywords

Crossrefs

Cf. A061548 (similar coefficients but for a different function).

Programs

  • Maple
    seq(numer(coeff(series(sqrt(1+1/sqrt(1-x))/sqrt(2), x,25),x,n)),n=1..20); # Muniru A Asiru, May 30 2018
  • Mathematica
    Table[Numerator[SeriesCoefficient[Series[(Sqrt[1 + 1/Sqrt[1 - x]]/Sqrt[2]), {x, 0, n}], n]], {n, 1, 20}]
Showing 1-5 of 5 results.