A200139 Triangle T(n,k), read by rows, given by (1,1,0,0,0,0,0,0,0,...) DELTA (1,0,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.
1, 1, 1, 2, 3, 1, 4, 8, 5, 1, 8, 20, 18, 7, 1, 16, 48, 56, 32, 9, 1, 32, 112, 160, 120, 50, 11, 1, 64, 256, 432, 400, 220, 72, 13, 1, 128, 576, 1120, 1232, 840, 364, 98, 15, 1, 256, 1280, 2816, 3584, 2912, 1568, 560, 128, 17, 1, 512, 2816, 6912, 9984, 9408, 6048, 2688, 816, 162, 19, 1
Offset: 0
Examples
Triangle begins: 1 1, 1 2, 3, 1 4, 8, 5, 1 8, 20, 18, 7, 1 16, 48, 56, 32, 9, 1 32, 112, 160, 120, 50, 11, 1
Crossrefs
Programs
-
Mathematica
nn=15;f[list_]:=Select[list,#>0&];Map[f,CoefficientList[Series[(1-x)/(1-2x-y x) ,{x,0,nn}],{x,y}]]//Grid (* Geoffrey Critzer, Nov 18 2012 *)
Formula
T(n,k) = 2*T(n-1,k)+T(n-1,k-1) with T(0,0)=T(1,0)=T(1,1)=1 and T(n,k)=0 for k<0 or for n
Sum_{k, 0<=k<=n} T(n,k)*x^k = A000007(n), A011782(n), A025192(n), A002001(n), A005054(n), A052934(n), A055272(n), A055274(n), A055275(n), A052268(n), A055276(n), A196731(n) for n=-1,0,1,2,3,4,5,6,7,8,9,10 respectively.
G.f.: (1-x)/(1-(2+y)*x).
T(n,k) = Sum_j>=0 T(n-1-j,k-1)*2^j.
T = A007318*A059260, so the row polynomials of this entry are given umbrally by p_n(x) = (1 + q.(x))^n, where q_n(x) are the row polynomials of A059260 and (q.(x))^k = q_k(x). Consequently, the e.g.f. is exp[tp.(x)] = exp[t(1+q.(x))] = e^t exp(tq.(x)) = [1 + (x+1)e^((x+2)t)]/(x+2), and p_n(x) = (x+1)(x+2)^(n-1) for n > 0. - Tom Copeland, Nov 15 2016
T^(-1) = A130595*(padded A130595), differently signed A118801. Cf. A097805. - Tom Copeland, Nov 17 2016
The n-th row polynomial in descending powers of x is the n-th Taylor polynomial of the rational function (1 + x)/(1 + 2*x) * (1 + 2*x)^n about 0. For example, for n = 4, (1 + x)/(1 + 2*x) * (1 + 2*x)^4 = (8*x^4 + 20*x*3 + 18*x^2 + 7*x + 1) + O(x^5). - Peter Bala, Feb 24 2018
A201701 Riordan triangle ((1-x)/(1-2*x), x^2/(1-2*x)).
1, 1, 0, 2, 1, 0, 4, 3, 0, 0, 8, 8, 1, 0, 0, 16, 20, 5, 0, 0, 0, 32, 48, 18, 1, 0, 0, 0, 64, 112, 56, 7, 0, 0, 0, 0, 128, 256, 160, 32, 1, 0, 0, 0, 0, 256, 576, 432, 120, 9, 0, 0, 0, 0, 0, 512, 1280, 1120, 400, 50, 1, 0, 0, 0, 0, 0
Offset: 0
Comments
Triangle T(n,k), read by rows, given by (1,1,0,0,0,0,0,0,0,...) DELTA (0,1,-1,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.
Skewed version of triangle in A200139.
Triangle without zeros: A207537.
For the version with negative odd numbered columns, which is Riordan ((1-x)/(1-2*x), -x^2/(1-2*x)) see comments on A028297 and A039991. - Wolfdieter Lang, Aug 06 2014
This is an example of a stretched Riordan array in the terminology of Section 2 of Corsani et al. - Peter Bala, Jul 14 2015
Examples
The triangle T(n,k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 11 ... 0: 1 1: 1 0 2: 2 1 0 3: 4 3 0 0 4: 8 8 1 0 0 5: 16 20 5 0 0 0 6: 32 48 18 1 0 0 0 7: 64 112 56 7 0 0 0 0 8: 128 256 160 32 1 0 0 0 0 9: 256 576 432 120 9 0 0 0 0 0 10: 512 1280 1120 400 50 1 0 0 0 0 0 11: 1024 2816 2816 1232 220 11 0 0 0 0 0 0 ... reformatted and extended. - _Wolfdieter Lang_, Aug 06 2014
Links
- C. Corsani, D. Merlini, and R. Sprugnoli, Left-inversion of combinatorial sums, Discrete Mathematics, 180 (1998) 107-122.
Crossrefs
Programs
-
Mathematica
(* The function RiordanArray is defined in A256893. *) RiordanArray[(1 - #)/(1 - 2 #)&, #^2/(1 - 2 #)&, 11] // Flatten (* Jean-François Alcover, Jul 16 2019 *)
Formula
T(n,k) = 2*T(n-1,k) + T(n-2,k-1) with T(0,0) = T(1,0) = 1, T(1,1) = 0 and T(n,k) = 0 for k<0 or for n
Sum_{k=0..n} T(n,k)^2 = A002002(n) for n>0.
Sum_{k=0..n} T(n,k)*x^k = A138229(n), A006495(n), A138230(n), A087455(n), A146559(n), A000012(n), A011782(n), A001333(n), A026150(n), A046717(n), A084057(n), A002533(n), A083098(n), A084058(n), A003665(n), A002535(n), A133294(n), A090042(n), A125816(n), A133343(n), A133345(n), A120612(n), A133356(n), A125818(n) for x = -6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 respectively.
G.f.: (1-x)/(1-2*x-y*x^2). - Philippe Deléham, Mar 03 2012
From Peter Bala, Jul 14 2015: (Start)
Factorizes as A034839 * A007318 = (1/(1 - x), x^2/(1 - x)^2) * (1/(1 - x), x/(1 - x)) as a product of Riordan arrays.
T(n,k) = Sum_{i = k..floor(n/2)} binomial(n,2*i) *binomial(i,k). (End)
Extensions
Name changed, keyword:easy added, crossrefs A028297 and A039991 added, and g.f. corrected by Wolfdieter Lang, Aug 06 2014
A053218 Triangle read by rows: T(n,k) = T(n,k-1) + T(n-1,k-1) for k >= 2 with T(n,1) = n.
1, 2, 3, 3, 5, 8, 4, 7, 12, 20, 5, 9, 16, 28, 48, 6, 11, 20, 36, 64, 112, 7, 13, 24, 44, 80, 144, 256, 8, 15, 28, 52, 96, 176, 320, 576, 9, 17, 32, 60, 112, 208, 384, 704, 1280, 10, 19, 36, 68, 128, 240, 448, 832, 1536, 2816, 11, 21, 40, 76, 144, 272, 512, 960, 1792, 3328
Offset: 1
Comments
Last term in each row gives A001792. Difference between center term of row 2n-1 and row sum of row n, (A053220(n+4) - A053221(n+4)) gives A045618(n).
For all integers k >= 2, if a sequence k,k-1,k+2,k-3,k+4,...,2,2k-2,1,2k-1, b0(n) with offset 1, is written, the sequence b0(2)-b0(1), b0(3)-b0(2), b0(4)-b0(3), ..., b0(2k-1)-b0(2k-2), b1(n) with offset 1, is written under it, the sequence b1(2)-b1(1), b1(3)-b1(2), b1(4)-b1(3), ..., b1(2k-2)-b1(2k-3), b2(n) with offset 1, is written under this, and so on until the sequence b(2k-3)(2)-b(2k-3)(1), b(2k-2)(n) with offset 1 (which will contain only one term), is written, and then the sequence b1(1); b1(2),b2(1); b1(3),b2(2),b3(1); ...; b1(2k-2), b2(2k-3), b3(2k-4), ..., b(2k-2)(1) is obtained, then this sequence will be identical to the first 2k^2-3k+1 terms of a(n), except that the first term of this sequence will be negative, the next two terms will be positive, the next three will be negative, the next four positive, and so on.
Subtriangle of triangle in A152920. - Philippe Deléham, Nov 21 2011
Examples
Triangle T(n,k) begins: 1; 2, 3; 3, 5, 8; 4, 7, 12, 20; 5, 9, 16, 28, 48; 6, 11, 20, 36, 64, 112; 7, 13, 24, 44, 80, 144, 256; ...
Crossrefs
Programs
-
Mathematica
NestList[FoldList[Plus, #[[1]] + 1, #] &, {1}, 10] // Grid (* Geoffrey Critzer, Jun 27 2013 *)
Formula
T(n, k) = n*2^(k-1) - (k-1)*2^(k-2). - Ya-Ping Lu, Mar 24 2023
A079863 a(n) is the number of occurrences of 11s in the palindromic compositions of m=2*n-1 = the number of occurrences of 12s in the palindromic compositions of m=2*n.
34, 70, 144, 296, 608, 1248, 2560, 5248, 10752, 22016, 45056, 92160, 188416, 385024, 786432, 1605632, 3276800, 6684672, 13631488, 27787264, 56623104, 115343360, 234881024, 478150656, 973078528, 1979711488, 4026531840, 8187281408, 16642998272, 33822867456
Offset: 12
Comments
This sequence is part of a family of sequences, namely R(n,k), the number of ks in palindromic compositions of n. See also A057711, A001792, A078836, A079861, A079862. General formula: R(n,k)=2^(floor(n/2) - k) * (2 + floor(n/2) - k) if n and k have different parity and R(n,k)=2^(floor(n/2) - k) * (2 + floor(n/2) - k + 2^(floor((k+1)/2 - 1)) otherwise, for n >= 2k.
Examples
a(12) = 34 since the palindromic compositions of 23 that contain a 11 are 11+1+11 and the 32 compositions of the form c+11+(reverse of c), where c represents a composition of 6.
Links
- Colin Barker, Table of n, a(n) for n = 12..1000
- P. Chinn, R. Grimaldi and S. Heubach, The frequency of summands of a particular size in Palindromic Compositions, Ars Combin. 69 (2003), 65-78.
- Index entries for linear recurrences with constant coefficients, signature (4,-4).
Programs
-
Mathematica
Table[(22 + i)*2^(i - 12), {i, 12, 50}] LinearRecurrence[{4,-4},{34,70},30] (* Harvey P. Dale, Jan 30 2017 *)
-
PARI
Vec(-2*x^12*(33*x-17)/(2*x-1)^2 + O(x^100)) \\ Colin Barker, Sep 29 2015
-
PARI
a(n)=(n+22)<<(n-12) \\ Charles R Greathouse IV, Sep 29 2015
Formula
a(n) = (n+22)*2^(n-12).
From Colin Barker, Sep 29 2015: (Start)
a(n) = 4*a(n-1) - 4*a(n-2) for n>13.
G.f.: -2*x^12*(33*x-17) / (2*x-1)^2.
(End)
A093375 Array T(m,n) read by ascending antidiagonals: T(m,n) = m*binomial(n+m-2, n-1) for m, n >= 1.
1, 2, 1, 3, 4, 1, 4, 9, 6, 1, 5, 16, 18, 8, 1, 6, 25, 40, 30, 10, 1, 7, 36, 75, 80, 45, 12, 1, 8, 49, 126, 175, 140, 63, 14, 1, 9, 64, 196, 336, 350, 224, 84, 16, 1, 10, 81, 288, 588, 756, 630, 336, 108, 18, 1, 11, 100, 405, 960, 1470, 1512, 1050, 480, 135, 20, 1, 12
Offset: 1
Comments
Number of n-long m-ary words avoiding the pattern 1-1'2'.
T(n,n+1) = Sum_{i=1..n} T(n,i).
Exponential Riordan array [(1+x)e^x, x] as a number triangle. - Paul Barry, Feb 17 2009
From Peter Bala, Jul 22 2014: (Start)
Call this array M and for k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/
having the k X k identity matrix I_k as the upper left block; in particular, M(0) = M. The infinite matrix product M(0)*M(1)*M(2)*..., which is clearly well-defined, is equal to A059298. (End)
Examples
Array T(m,n) (with rows m >= 1 and columns n >= 1) begins as follows: 1 1 1 1 1 1 ... 2 4 6 8 10 12 ... 3 9 18 30 45 63 ... 4 16 40 80 140 224 ... 5 25 75 175 350 630 ... ... Triangle S(n,k) = T(n-k+1, k+1) begins .n\k.|....0....1....2....3....4....5....6 = = = = = = = = = = = = = = = = = = = = = ..0..|....1 ..1..|....2....1 ..2..|....3....4....1 ..3..|....4....9....6....1 ..4..|....5...16...18....8....1 ..5..|....6...25...40...30...10....1 ..6..|....7...36...75...80...45...12....1 ...
Links
- Muniru A Asiru, Antidiagonals, n=1..100 flattened
- Yasemin Alp and E. Gokcen Kocer, Exponential Almost-Riordan Arrays, Results Math 79, 173 (2024). See page 7.
- Sergey Kitaev and Toufik Mansour, Partially ordered generalized patterns and k-ary words, arXiv:math/0210023 [math.CO], 2002.
- Wikipedia, Sheffer sequence.
Crossrefs
Programs
-
GAP
nmax:=14;; T:=List([1..nmax],n->List([1..nmax],k->k*Binomial(n+k-2,n-1)));; b:=List([2..nmax],n->OrderedPartitions(n,2));; a:=Flat(List([1..Length(b)],i->List([1..Length(b[i])],j->T[b[i][j][1]][b[i][j][2]]))); # Muniru A Asiru, Aug 07 2018
-
Mathematica
nmax = 10; T = Transpose[CoefficientList[# + O[z]^(nmax+1), z]& /@ CoefficientList[(1 - x z)/(1 - z - x z)^2 + O[x]^(nmax+1), x]]; row[n_] := T[[n+1, 1 ;; n+1]]; Table[row[n], {n, 0, nmax}] // Flatten (* Jean-François Alcover, Aug 07 2018 *)
-
Sage
# uses[riordan_array from A256893] riordan_array((1+x)*exp(x), x, 8, exp=true) # Peter Luschny, Nov 02 2019
Formula
Triangle = P*M, the binomial transform of the infinite bidiagonal matrix M with (1,1,1,...) in the main diagonal and (1,2,3,...) in the subdiagonal, and zeros elsewhere. P = Pascal's triangle as an infinite lower triangular matrix. - Gary W. Adamson, Nov 05 2006
From Peter Bala, Sep 20 2012: (Start)
E.g.f. for triangle: (1 + z)*exp((1 + x)*z) = 1 + (2 + x)*z + (3 + 4*x + x^2)*z^2/2! + ....
O.g.f. for triangle: (1 - x*z)/(1 - z - x*z)^2 = 1 + (2 + x)*z + (3 + 4*x + x^2)*z^2 + ....
The n-th row polynomial R(n,x) of the triangle equals (1+x)^n + n*(1+x)^(n-1) for n >= 0 and satisfies d/dx(R(n,x)) = n*R(n-1,x), as well as R(n,x+y) = Sum_{k = 0..n} binomial(n,k)*R(k,x)*y^(n-k). The row polynomials are a Sheffer sequence of Appell type.
Matrix inverse of the triangle is a signed version of A073107. (End)
From Tom Copeland, Oct 20 2015: (Start)
With offset 0 and D = d/dx, the raising operator for the signed row polynomials P(n,x) is RP = x - d{log[e^D/(1-D)]}/dD = x - 1 - 1/(1-D) = x - 2 - D - D^2 + ..., i.e., RP P(n,x) = P(n+1,x).
The e.g.f. for the signed array is (1-t) * e^(-t) * e^(x*t).
From the Appell formalism, the row polynomials PI(n,x) of A073107 are the umbral inverse of this entry's row polynomials; that is, P(n,PI(.,x)) = x^n = PI(n,P(.,x)) under umbral composition. (End)
From Petros Hadjicostas, Nov 01 2019: (Start)
As a triangle, we let S(n,k) = T(n-k+1, k+1) = (n-k+1)*binomial(n, k) for n >= 0 and 0 <= k <= n. See the example below.
As stated above by Peter Bala, Sum_{n,k >= 0} S(n,k)*z^n*x^k = (1 - x*z)/(1 - z -x*z)^2.
Also, Sum_{n, k >= 0} S(n,k)*z^n*x^k/n! = (1+z)*exp((1+x)*z).
As he also states, the n-th row polynomial is R(n,x) = Sum_{k = 0..n} S(n, k)*x^k = (1 + x)^n + n*(1 + x)^(n-1).
If we define the signed triangle S*(n,k) = (-1)^(n+k) * S(n,k) = (-1)^(n+k) * T(n-k+1, k+1), as Tom Copeland states, Sum_{n,k >= 0} S^*(n,k)*t^n*x^k/n! = (1-t)*exp((1-x)*(-t)) = (1-t) * e^(-t) * e^(x*t).
Apparently, S*(n,k) = A103283(n,k).
As he says above, the signed n-th row polynomial is P(n,x) = (-1)^n*R(n,-x) = (x - 1)^n - n*(x - 1)^(n-1).
According to Gary W. Adamson, P(n,x) is "the monic characteristic polynomial of the n X n matrix with 2's on the diagonal and 1's elsewhere." (End)
A106195 Riordan array (1/(1-2*x), x*(1-x)/(1-2*x)).
1, 2, 1, 4, 3, 1, 8, 8, 4, 1, 16, 20, 13, 5, 1, 32, 48, 38, 19, 6, 1, 64, 112, 104, 63, 26, 7, 1, 128, 256, 272, 192, 96, 34, 8, 1, 256, 576, 688, 552, 321, 138, 43, 9, 1, 512, 1280, 1696, 1520, 1002, 501, 190, 53, 10, 1, 1024, 2816, 4096, 4048, 2972, 1683, 743, 253, 64, 11
Offset: 0
Comments
Extract antidiagonals from the product P * A, where P = the infinite lower triangular Pascal's triangle matrix; and A = the Pascal's triangle array:
1, 1, 1, 1, ...
1, 2, 3, 4, ...
1, 3, 6, 10, ...
1, 4, 10, 20, ...
...
Row sums are Fibonacci(2n+2). Diagonal sums are A006054(n+2). Row sums of inverse are A105523. Product of Pascal triangle A007318 and A046854.
A106195 with an appended column of ones = A055587. Alternatively, k-th column (k=0, 1, 2) is the binomial transform of bin(n, k).
T(n,k) is the number of ideals in the fence Z(2n) having k elements of rank 1. - Emanuele Munarini, Mar 22 2011
Subtriangle of the triangle given by (0, 2, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 22 2012
Examples
Triangle begins 1; 2, 1; 4, 3, 1; 8, 8, 4, 1; 16, 20, 13, 5, 1; 32, 48, 38, 19, 6, 1; 64, 112, 104, 63, 26, 7, 1; (0, 2, 0, 0, 0, ...) DELTA (1, 0, -1/2, 1/2, 0, 0, ...) begins : 1; 0, 1; 0, 2, 1; 0, 4, 3, 1; 0, 8, 8, 4, 1; 0, 16, 20, 13, 5, 1; 0, 32, 48, 38, 19, 6, 1; 0, 64, 112, 104, 63, 26, 7, 1. - _Philippe Deléham_, Mar 22 2012
Links
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- E. Munarini, N. Zagaglia Salvi, On the Rank Polynomial of the Lattice of Order Ideals of Fences and Crowns, Discrete Mathematics 259 (2002), 163-177.
Crossrefs
Programs
-
Haskell
a106195 n k = a106195_tabl !! n !! k a106195_row n = a106195_tabl !! n a106195_tabl = [1] : [2, 1] : f [1] [2, 1] where f us vs = ws : f vs ws where ws = zipWith (-) (zipWith (+) ([0] ++ vs) (map (* 2) vs ++ [0])) ([0] ++ us ++ [0]) -- Reinhard Zumkeller, Dec 16 2013
-
Magma
[ (&+[Binomial(n-k, n-j)*Binomial(j, k): j in [0..n]]): k in [0..n], n in [0..10]]; // G. C. Greubel, Mar 15 2020
-
Maple
T := (n, k) -> hypergeom([-n+k, k+1],[1],-1): seq(lprint(seq(simplify(T(n, k)), k=0..n)), n=0..7); # Peter Luschny, May 20 2015
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + v[n - 1, x] v[n_, x_] := u[n - 1, x] + (x + 1) v[n - 1, x] Table[Factor[u[n, x]], {n, 1, z}] Table[Factor[v[n, x]], {n, 1, z}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A207605 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A106195 *) (* Clark Kimberling, Feb 19 2012 *) Table[Hypergeometric2F1[-n+k, k+1, 1, -1], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 15 2020 *)
-
Maxima
create_list(sum(binomial(i,k)*binomial(n-k,n-i),i,0,n),n,0,8,k,0,n); /* Emanuele Munarini, Mar 22 2011 */
-
Python
from sympy import Poly, symbols x = symbols('x') def u(n, x): return 1 if n==1 else u(n - 1, x) + v(n - 1, x) def v(n, x): return 1 if n==1 else u(n - 1, x) + (x + 1)*v(n - 1, x) def a(n): return Poly(v(n, x), x).all_coeffs()[::-1] for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 28 2017
-
Python
from mpmath import hyp2f1, nprint def T(n, k): return hyp2f1(k - n, k + 1, 1, -1) for n in range(13): nprint([int(T(n, k)) for k in range(n + 1)]) # Indranil Ghosh, May 28 2017, after formula from Peter Luschny
-
Sage
[[sum(binomial(n-k,n-j)*binomial(j,k) for j in (0..n)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 15 2020
Formula
T(n,k) = Sum_{j=0..n} C(n-k,n-j)*C(j,k).
From Emanuele Munarini, Mar 22 2011: (Start)
T(n,k) = Sum_{i=0..n-k} C(k,i)*C(n-k,i)*2^(n-k-i).
T(n,k) = Sum_{i=0..n-k} C(k,i)*C(n-i,k)*(-1)^i*2^(n-k-i).
Recurrence: T(n+2,k+1) = 2*T(n+1,k+1)+T(n+1,k)-T(n,k). (End)
From Clark Kimberling, Feb 19 2012: (Start)
Define u(n,x) = u(n-1,x)+v(n-1,x), v(n,x) = u(n-1,x)+(x+1)*v(n-1,x),
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k-1). - Philippe Deléham, Mar 22 2012
T(n+k,k) is the coefficient of x^n y^k in 1/(1-2x-y+xy). - Ira M. Gessel, Oct 30 2012
T(n, k) = A208341(n+1,n-k+1), k = 0..n. - Reinhard Zumkeller, Dec 16 2013
T(n, k) = hypergeometric_2F1(-n+k, k+1, 1 , -1). - Peter Luschny, May 20 2015
G.f. 1/(1-2*x+x^2*y-x*y). - R. J. Mathar, Aug 11 2015
Sum_{k=0..n} T(n, k) = Fibonacci(2*n+2) = A088305(n+1). - G. C. Greubel, Mar 15 2020
Extensions
Edited by N. J. A. Sloane, Apr 09 2007, merging two sequences submitted independently by Gary W. Adamson and Paul Barry
A108730 Triangle read by rows: row n gives the list of the number of zeros following each 1 in the binary representation of n.
0, 1, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 3, 2, 0, 1, 1, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 4, 3, 0, 2, 1, 2, 0, 0, 1, 2, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 3, 0, 2, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 5, 4, 0, 3, 1, 3, 0, 0, 2, 2, 2, 1, 0, 2, 0, 1, 2, 0, 0, 0, 1, 3, 1, 2, 0
Offset: 1
Comments
This is probably the simplest method for putting the nonnegative integers into one-to-one correspondence with the finite sequences of nonnegative integers and is the standard ordering for such sequences in this database.
This sequence contains every finite sequence of nonnegative integers.
This can be regarded as a table in two ways: with each weak composition as a row, or with the weak compositions of each integer as a row. The first way has A000120 as row lengths and A080791 as row sums; the second has A001792 as row lengths and A001787 as row sums. - Franklin T. Adams-Watters, Nov 06 2006
Concatenate the base-two positive integers (A030190 less the initial zero). Left to right and disallowing leading zeros, reorganize the digits into the smallest possible numbers. These will be the base-two powers-of-two of A108730. - Hans Havermann, Nov 14 2009
T(2^(n-1),0) = n-1 and T(m,k) < n-1 for all m < 2^n, k <= A000120(m). When the triangle is seen as a flattened list, each n occurs first at position n*2^(n-1)+1, cf. A005183. - Reinhard Zumkeller, Feb 26 2012
Equals A066099-1, elementwise. - Andrey Zabolotskiy, May 18 2018
Examples
Triangle begins: 0 1 0,0 2 1,0 0,1 0,0,0 3 For example, 25 = 11001_2; following the 1's are 0, 2 and 0 zeros, so row 25 is 0, 2, 0.
Links
- Franklin T. Adams-Watters, Table of n, a(n) for n = 1..5120 (through 10 bit numbers)
Crossrefs
Programs
-
Haskell
import Data.List (unfoldr, group) a108730 n k = a108730_tabf !! (n-1) !! (k-1) a108730_row = f . group . reverse . unfoldr (\x -> if x == 0 then Nothing else Just $ swap $ divMod x 2) where f [] = [] f [os] = replicate (length os) 0 f (os:zs:dss) = replicate (length os - 1) 0 ++ [length zs] ++ f dss a108730_tabf = map a108730_row [1..] a108730_list = concat a108730_tabf -- Reinhard Zumkeller, Feb 26 2012
-
Mathematica
row[n_] := (id = IntegerDigits[n, 2]; sp = Split[id]; f[run_List] := If[First[run] == 0, run, Sequence @@ Table[{}, {Length[run] - 1}]]; len = Length /@ f /@ sp; If[Last[id] == 0, len, Append[len, 0]]); Flatten[ Table[row[n], {n, 1, 41}]] (* Jean-François Alcover, Jul 13 2012 *)
-
PARI
row(n)=my(v=vector(hammingweight(n)),t=n); for(i=0,#v-1,v[#v-i] = valuation(t,2); t>>=v[#v-i]+1); v \\ Charles R Greathouse IV, Sep 14 2015
Extensions
Edited by Franklin T. Adams-Watters, Nov 06 2006
A109435 Triangle read by rows: T(n,m) = number of binary numbers n digits long, which have m 0's as a substring.
1, 2, 1, 4, 3, 1, 8, 7, 3, 1, 16, 15, 8, 3, 1, 32, 31, 19, 8, 3, 1, 64, 63, 43, 20, 8, 3, 1, 128, 127, 94, 47, 20, 8, 3, 1, 256, 255, 201, 107, 48, 20, 8, 3, 1, 512, 511, 423, 238, 111, 48, 20, 8, 3, 1, 1024, 1023, 880, 520, 251, 112, 48, 20, 8, 3, 1, 2048, 2047, 1815, 1121, 558
Offset: 0
Comments
Examples
Triangle begins: n\m_0__1__2__3__4__5 0| 1 0 0 0 0 0 1| 2 1 0 0 0 0 2| 4 3 1 0 0 0 3| 8 7 3 1 0 0 4| 16 15 8 3 1 0 5| 32 31 19 8 3 1 T(5,3)=8 because there are 8 length 5 binary words that contain 000 as a contiguous substring: 00000, 00001, 00010, 00011, 01000, 10000, 10001, 11000. - _Geoffrey Critzer_, Jan 07 2014
Programs
-
Maple
A109435 := proc(n,k) option remember ; if n< k then 0; elif n = k then 1; else 2*procname(n-1,k)+2^(n-1-k)-procname(n-1-k,k) ; end if; end proc: seq(seq( A109435(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Jun 05 2025
-
Mathematica
T[n_, m_] := Length[ Select[ StringPosition[ #, StringDrop[ ToString[10^m], 1]] & /@ Table[ ToString[ FromDigits[ IntegerDigits[i, 2]]], {i, 2^n, 2^(n + 1) - 1}], # != {} &]]; Flatten[ Table[ T[n, m], {n, 0, 11}, {m, 0, n}]] nn=15;Map[Select[#,#>0&]&,Transpose[Table[CoefficientList[Series[x^m/(1-Sum[x^k,{k,1,m}])/(1-2x),{x,0,nn}],x],{m,0,nn}]]]//Grid (* Geoffrey Critzer, Jan 07 2014 *)
Formula
G.f. for column m: x^m/( (1 - Sum_{k=1..m} x^k)*(1-2*x) ). - Geoffrey Critzer, Jan 07 2014
A134401 Row sums of triangle A134400.
1, 2, 8, 24, 64, 160, 384, 896, 2048, 4608, 10240, 22528, 49152, 106496, 229376, 491520, 1048576, 2228224, 4718592, 9961472, 20971520, 44040192, 92274688, 192937984, 402653184, 838860800, 1744830464, 3623878656, 7516192768
Offset: 0
Comments
Essentially the same sequence as A036289.
An elephant sequence, see A175654. For the corner squares four A[5] vectors, with decimal values 187, 190, 250 and 442, lead to this sequence. For the central square these vectors lead to the companion sequence 2*A001792, for n >= 1 and a(0)=1. - Johannes W. Meijer, Aug 15 2010
Number of vertices on a partially truncated n-cube (column 1 of A271316). - Vincent J. Matsko, Apr 07 2016
Examples
a(3) = 24 = sum of row 3 terms of triangle A134400: (3 + 9 + 9 + 3). a(3) = 24 = (1, 3, 3, 1) dot (1, 1, 5, 5) = (1 + 3 + 15 + 5).
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-4).
Programs
-
GAP
a:=Concatenation([1],List([1..30],n->n*2^n)); # Muniru A Asiru, Oct 28 2018
-
Maple
1,seq(n*2^n,n=1..30); # Muniru A Asiru, Oct 28 2018
-
Mathematica
F = Function[x, x*2^x];F[Range[1, 10]] (* Eugeny Yakimovitch (Eugeny.Yakimovitch(AT)gmail.com), Jan 08 2008 *) {1}~Join~Table[n 2^n, {n, 28}] (* or *) Total /@ Join[{{1}}, Table[n Binomial[n, k], {n, 28}, {k, 0, n}]] (* Michael De Vlieger, Apr 07 2016 *)
-
PARI
x='x+O('x^99); Vec((1-2*x+4*x^2)/(1-2*x)^2) \\ Altug Alkan, Apr 07 2016
Formula
Binomial transform of repeats of (4n+1): [1, 1, 5, 5, 9, 9, 13, 13, ...].
a(n) = n*2^n, n > 1. - Eugeny Yakimovitch (Eugeny.Yakimovitch(AT)gmail.com), Jan 08 2008
From Colin Barker, Jul 29 2012: (Start)
a(n) = 4*a(n-1) - 4*a(n-2) for n > 2.
G.f.: (1 - 2*x + 4*x^2)/(1-2*x)^2. (End)
E.g.f.: 1-E(0) where E(k)=1 - (k+1)/(1 - 2*x/(2*x - (k+1)^2/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 07 2012
a(n) = A097064(n+1) for n >= 1. - Georg Fischer, Oct 28 2018
E.g.f.: 1 + 2*exp(2*x)*x. - Stefano Spezia, Feb 12 2023
Extensions
More terms from Johannes W. Meijer, Aug 15 2010
A159695 a(0)=7, a(n) = 2*a(n-1) + 2^(n-1) for n > 0.
7, 15, 32, 68, 144, 304, 640, 1344, 2816, 5888, 12288, 25600, 53248, 110592, 229376, 475136, 983040, 2031616, 4194304, 8650752, 17825792, 36700160, 75497472, 155189248, 318767104, 654311424, 1342177280, 2751463424, 5637144576
Offset: 0
Examples
a(0)=7, a(1) = 2*7 + 1 = 15, a(2) = 2*15 + 2 = 32, a(3) = 2*32 + 4 = 68, a(4) = 2*68 + 8 = 144, ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..3300
- Index entries for linear recurrences with constant coefficients, signature (4, -4).
Programs
-
Magma
[(14+n)*2^(n-1): n in [0..30]]; // G. C. Greubel, Jun 02 2018
-
Mathematica
LinearRecurrence[{4,-4}, {7,15}, 30] (* or *) Table[(14+n)*2^(n-1), {n, 0, 30}] (* G. C. Greubel, Jun 02 2018 *) nxt[{n_,a_}]:={n+1,2a+2^n}; NestList[nxt,{0,7},30][[All,2]] (* Harvey P. Dale, Jan 01 2023 *)
-
PARI
for(n=0, 30, print1((14+n)*2^(n-1), ", ")) \\ G. C. Greubel, Jun 02 2018
Formula
a(n) = Sum_{k=0..n} (k+7)*binomial(n,k).
From R. J. Mathar, Apr 20 2009: (Start)
a(n) = (14+n)*2^(n-1).
a(n) = 4*a(n-1) - 4*a(n-2).
G.f.: (7-13*x)/(1-2x)^2. (End)
E.g.f.: (x+7)*exp(2*x). - G. C. Greubel, Jun 02 2018
From Amiram Eldar, Jan 19 2021: (Start)
Sum_{n>=0} 1/a(n) = 32768*log(2) - 204619418/9009.
Sum_{n>=0} (-1)^n/a(n) = 598484902/45045 - 32768*log(3/2). (End)
Extensions
More terms from R. J. Mathar, Apr 20 2009
Comments