cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 92 results. Next

A290770 a(n) = Product_{k=1..n} k^(2*k).

Original entry on oeis.org

1, 1, 16, 11664, 764411904, 7464960000000000, 16249593066946560000000000, 11020848942410302096869949440000000000, 3102093199396597590886754340698424229232640000000000, 465607547420733489126893933985879279492195953053596584509440000000000
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 10 2017

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [(&*[k^(2*k): k in [1..n]]): n in [1..10]]; // G. C. Greubel, Oct 14 2018
  • Mathematica
    Table[Product[k^(2 k), {k, 1, n}], {n, 0, 9}]
    Table[Hyperfactorial[n]^2, {n, 0, 9}]
    Table[n!^(2 n)/BarnesG[n + 1]^2, {n, 0, 9}]
  • PARI
    a(n) = prod(k=1, n, k^(2*k)) \\ Felix Fröhlich, Aug 10 2017
    

Formula

a(n) = A002109(n)^2.
a(n) = A185141(n)/A000178(n-1)^2 for n > 0.
a(n) = (n!)^(2*n)/G(n+1)^2, where G() is the Barnes G-function.
a(n) ~ A^2*exp(-n^2/2)*n^(n*(n+1))*n^(1/6), where A is the Glaisher-Kinkelin constant (A074962).

A291483 Expansion of e.g.f. arcsinh(x)*exp(x).

Original entry on oeis.org

0, 1, 2, 2, 0, 4, 40, -64, -1344, 3984, 85408, -356896, -8462080, 45908160, 1209040768, -8080805888, -235449260032, 1871655631104, 59955521585664, -552758145525248, -19339870285225984, 202927333558572032, 7707208199780517888, -90698934927786770432, -3718489569130941169664, 48507735629457304555520
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 24 2017

Keywords

Examples

			E.g.f.: A(x) = x/1! + 2*x^2/2! + 2*x^3/3! + 4*x^5/5! + 40*x^6/6! - 64*x^7/7! - 1344*x^8/8! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(arcsinh(x)*exp(x),x=0,26): seq(n!*coeff(a,x,n),n=0..25); # Paolo P. Lava, Mar 27 2019
  • Mathematica
    nmax = 25; Range[0, nmax]! CoefficientList[Series[ArcSinh[x] Exp[x], {x, 0, nmax}], x]
    nmax = 25; Range[0, nmax]! CoefficientList[Series[Log[x + Sqrt[1 + x^2]] Exp[x], {x, 0, nmax}], x]
    nmax = 25; Range[0, nmax]! CoefficientList[Series[-Sum[((-1)^k (-1 + x + Sqrt[1 + x^2])^k)/k, {k, 1, Infinity}] Exp[x], {x, 0, nmax}], x]

Formula

E.g.f.: log(x + sqrt(1 + x^2))*exp(x).

A291527 E.g.f. A(x,k) satisfies: sn(A(x,k), k) = k * sn(x,k), where sn(,) and cn(,) are Jacobi Elliptic functions.

Original entry on oeis.org

1, -1, 0, 1, 1, 4, -10, -4, 9, -1, -44, 75, 224, -299, -180, 225, 1, 408, 92, -7400, 4758, 19592, -15876, -12600, 11025, -1, -3688, -23387, 194160, 155702, -1313312, 264586, 2445840, -1289925, -1323000, 893025, 1, 33212, 804210, -3980044, -20402105, 64915224, 74573980, -279362392, -18229761, 414859500, -144802350, -196465500, 108056025, -1, -298932, -22347185, 33998224, 1349961795, -1942776004, -12484642765, 21458573952, 32679754381, -72263858940, -19224079875, 92046754800, -20560114575, -39332393100, 18261468225, 1, 2690416, 581249144, 2783246128, -71371497796, -59230867280, 1313526021896, -606679979408, -7350770598874, 7512502827344, 15289334428104, -22529210886000, -9997446759300, 25906255174800, -3292683193800, -10226422206000, 4108830350625
Offset: 1

Views

Author

Paul D. Hanna, Aug 25 2017

Keywords

Comments

Compare to the law of sines of a spherical triangle: sin(A)/sin(a) = k.
The series reversion of e.g.f. A(x,k) wrt x equals A(k*x, 1/k) / k.

Examples

			This irregular triangle of coefficients T(n,r) in A(x,k) begins:
[1],
[-1, 0, 1],
[1, 4, -10, -4, 9],
[-1, -44, 75, 224, -299, -180, 225],
[1, 408, 92, -7400, 4758, 19592, -15876, -12600, 11025],
[-1, -3688, -23387, 194160, 155702, -1313312, 264586, 2445840, -1289925, -1323000, 893025],
[1, 33212, 804210, -3980044, -20402105, 64915224, 74573980, -279362392, -18229761, 414859500, -144802350, -196465500, 108056025],
[-1, -298932, -22347185, 33998224, 1349961795, -1942776004, -12484642765, 21458573952, 32679754381, -72263858940, -19224079875, 92046754800, -20560114575, -39332393100, 18261468225],
[1, 2690416, 581249144, 2783246128, -71371497796, -59230867280, 1313526021896, -606679979408, -7350770598874, 7512502827344, 15289334428104, -22529210886000, -9997446759300, 25906255174800, -3292683193800, -10226422206000, 4108830350625], ...
where e.g.f. A(x,k) = Sum_{n>=1, r=1..2*n-1} T(n,r) * x^(2*n-1) * k^(2*r-1) / (2*n-1)!.
E.g.f.: A(x,k) = k*x + (k^5 - k)*x^3/3! +
(9*k^9 - 4*k^7 - 10*k^5 + 4*k^3 + k)*x^5/5! +
(225*k^13 - 180*k^11 - 299*k^9 + 224*k^7 + 75*k^5 - 44*k^3 - k)*x^7/7! +
(11025*k^17 - 12600*k^15 - 15876*k^13 + 19592*k^11 + 4758*k^9 - 7400*k^7 + 92*k^5 + 408*k^3 + k)*x^9/9! +
(893025*k^21 - 1323000*k^19 - 1289925*k^17 + 2445840*k^15 + 264586*k^13 - 1313312*k^11 + 155702*k^9 + 194160*k^7 - 23387*k^5 - 3688*k^3 - k)*x^11/11! +
(108056025*k^25 - 196465500*k^23 - 144802350*k^21 + 414859500*k^19 - 18229761*k^17 - 279362392*k^15 + 74573980*k^13 + 64915224*k^11 - 20402105*k^9 - 3980044*k^7 + 804210*k^5 + 33212*k^3 + k)*x^13/13! +
(18261468225*k^29 - 39332393100*k^27 - 20560114575*k^25 + 92046754800*k^23 - 19224079875*k^21 - 72263858940*k^19 + 32679754381*k^17 + 21458573952*k^15 - 12484642765*k^13 - 1942776004*k^11 + 1349961795*k^9 + 33998224*k^7 - 22347185*k^5 - 298932*k^3 - k)*x^15/15! +...
such that
(1) sn(A(x,k), k) = k * sn(x,k),
(2) cn(A(x,k), k) = dn(x,k),
(3) dn(A(k*x,1/k)/k, k) = cn(x,k),
(4) A(k * A(x,k), 1/k) = k * x,
(5) A(A(x,1/k) / k, k) = x / k.
RELATED SERIES.
Let A^r(x,k) denote the r-th iteration of A(x,k) wrt x, then
sn( A^r(x,k), k) = k^r * sn(x,k).
For example, sn( A(A(x,k), k), k) = k^2 * sn(x,k), where
A(A(x,k), k) = k^2*x + (k^8 + k^6 - k^4 - k^2)*x^3/3! + (9*k^14 + 6*k^12 - k^10 - 20*k^8 - 9*k^6 + 14*k^4 + k^2)*x^5/5! + (225*k^20 + 135*k^18 - 180*k^16 - 300*k^14- 434*k^12 + 210*k^10 + 524*k^8 - 44*k^6 - 135*k^4 - k^2)*x^7/7! + (11025*k^26 + 6300*k^24 - 13230*k^22 - 23940*k^20 - 2961*k^18 + 6552*k^16 + 18332*k^14 + 22712*k^12 - 17825*k^10 - 12852*k^8 + 4658*k^6 + 1228*k^4 + k^2)*x^9/9! + (893025*k^32 + 496125*k^30 - 1393875*k^28 - 2433375*k^26 - 335475*k^24 + 3138345*k^22 + 866745*k^20 - 82995*k^18 + 562771*k^16 - 2154361*k^14 - 783465*k^12 + 1194707*k^10 + 201343*k^8 - 158445*k^6 - 11069*k^4 - k^2)*x^11/11! +...
Related Jacobi elliptic functions sn(,), cn(,), and dn(,) begin:
sn(x,k) = x + (-k^2 - 1)*x^3/3! + (k^4 + 14*k^2 + 1)*x^5/5! + (-k^6 - 135*k^4 - 135*k^2 - 1)*x^7/7! + (k^8 + 1228*k^6 + 5478*k^4 + 1228*k^2 + 1)*x^9/9! + (-k^10 - 11069*k^8 - 165826*k^6 - 165826*k^4 - 11069*k^2 - 1)*x^11/11! + (k^12 + 99642*k^10 + 4494351*k^8 + 13180268*k^6 + 4494351*k^4 + 99642*k^2 + 1)*x^13/13! + (-k^14 - 896803*k^12 - 116294673*k^10 - 834687179*k^8 - 834687179*k^6 - 116294673*k^4 - 896803*k^2 - 1)*x^15/15! +...
where sn(x,k) = sn(A(x,k), k)/k.
cn(x,k) = 1 - x^2/2! + (4*k^2 + 1)*x^4/4! + (-16*k^4 - 44*k^2 - 1)*x^6/6! + (64*k^6 + 912*k^4 + 408*k^2 + 1)*x^8/8! + (-256*k^8 - 15808*k^6 - 30768*k^4 - 3688*k^2 - 1)*x^10/10! + (1024*k^10 + 259328*k^8 + 1538560*k^6 + 870640*k^4 + 33212*k^2 + 1)*x^12/12! + (-4096*k^12 - 4180992*k^10 - 65008896*k^8 - 106923008*k^6 - 22945056*k^4 - 298932*k^2 - 1)*x^14/14! +...
where cn(x,k) = dn(A(k*x,1/k)/k, k),
and cn(2*A(x,k), k) = -1 + 2*dn(x,k)^2 / (1 - k^6*sn(x,k)^4).
dn(x,k) = 1 - k^2*x^2/2! + (k^4 + 4*k^2)*x^4/4! + (-k^6 - 44*k^4 - 16*k^2)*x^6/6! + (k^8 + 408*k^6 + 912*k^4 + 64*k^2)*x^8/8! + (-k^10 - 3688*k^8 -30768*k^6 - 15808*k^4 - 256*k^2)*x^10/10! + (k^12 + 33212*k^10 + 870640*k^8 + 1538560*k^6 + 259328*k^4 + 1024*k^2)*x^12/12! + (-k^14 - 298932*k^12 - 22945056*k^10 - 106923008*k^8 - 65008896*k^6 - 4180992*k^4 - 4096*k^2)*x^14/14! +...
where dn(x,k) = cn(A(x,k),k).
		

Crossrefs

Programs

  • PARI
    /* Find A such that sn(A,k) = k * sn(x,k) */
    {T(n,r) = my(A=x,V=[k],S=x,C=1-x^2/2);
    for(m=0,n, V=concat(V,[0,0]); A = x*Ser(V);
    S = intformal(C*subst(C,x,A));
    C = 1 - intformal(S*subst(C,x,A));
    V[#V] = -polcoeff(subst(S,x,A)/S,#V-1,x););
    (2*n-1)!*polcoeff(V[2*n-1],2*r-1,k)}
    for(n=1,10, for(r=1,2*n-1, print1(T(n,r),", "));print(""))
    
  • PARI
    {T(n, k) = my(A, m); if( n<0 || k>=(m=2*n+1), 0, A = intformal(1 / sqrt((1 - x^2) * (1 - y^2*x^2) + x*O(x^m))); A = subst(A, x, y * serreverse(A)); m! * polcoeff( polcoeff(A, m), 2*k+1))}; /* Michael Somos, Aug 27 2017 */

Formula

E.g.f. A(x,k) = Sum_{n>=1, r=1..2*n-1} T(n,r) * x^(2*n-1) * k^(2*r-1)/(2*n-1)!, satisfies:
(1) sn(A(x,k), k) = k * sn(x,k),
(2) cn(A(x,k), k) = dn(x,k),
(3) dn(A(k*x,1/k)/k, k) = cn(x,k),
(4) A(k*A(x,k), 1/k) = k*x,
(5) A(A(x,1/k)/k, k) = x/k,
(6) sn( A^r(x,k), k) = k^r * sn(x,k) where A^r(x,k) = A( A^{r-1}(x,k), k) is the r-th iteration of A(x,k) wrt x, with A^0(x,k) = x.
Row sums of n-th row equals zero for n>1.
T(n+1,1) = (-1)^n for n>=0.
T(n+1, 2*n+1) = ( (2*n)! / (n!*2^n) )^2 = A001818(n) for n>=0.

A296677 Expansion of e.g.f. arctan(arcsin(x)) (odd powers only).

Original entry on oeis.org

1, -1, 13, -173, 12409, -370137, 88556037, -2668274373, 2491377242481, 34526890553679, 202383113207336829, 25792743610973373219, 39172126704113226631401, 12501799823936578879327095, 15717805122762984314778029685, 9078237580992214462785729689355
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 18 2017

Keywords

Examples

			arctan(arcsin(x)) = x/1! - x^3/3! + 13*x^5/5! - 173*x^7/7! + 12409*x^9/9! - 370137*x^11/11! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 16; Table[(CoefficientList[Series[ArcTan[ArcSin[x]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]
    nmax = 16; Table[(CoefficientList[Series[(I/2) Log[1 - Log[I x + Sqrt[1 - x^2]]] - (I/2) Log[1 + Log[I x + Sqrt[1 - x^2]]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]

Formula

E.g.f.: (i/2)*log(1 - log(i*x + sqrt(1 - x^2))) - (i/2)*log(1 + log(i*x + sqrt(1 - x^2))), where i is the imaginary unit (odd powers only).

A296726 Expansion of e.g.f. arcsin(x)/(1 - x).

Original entry on oeis.org

0, 1, 2, 7, 28, 149, 894, 6483, 51864, 477801, 4778010, 53451135, 641413620, 8446433085, 118250063190, 1792012416075, 28672198657200, 491536207523025, 8847651735414450, 169292834944205175, 3385856698884103500, 71531660838216529125, 1573696538440763640750
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 19 2017

Keywords

Examples

			arcsin(x)/(1 - x) = x/1! + 2*x^2/2! + 7*x^3/3! + 28*x^4/4! + 149*x^5/5! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(arcsin(x)/(1 - x),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Mar 27 2019
  • Mathematica
    nmax = 22; CoefficientList[Series[ArcSin[x]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 22; CoefficientList[Series[-I Log[I x + Sqrt[1 - x^2]]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    first(n) = x='x+O('x^n); Vec(serlaplace(asin(x)/(1 - x)), -n) \\ Iain Fox, Dec 19 2017

Formula

E.g.f.: -i*log(i*x + sqrt(1 - x^2))/(1 - x), where i is the imaginary unit.
a(n) ~ n! * Pi/2. - Vaclav Kotesovec, Dec 20 2017
a(2*n) = 2*n*a(2*n-1). - Greg Dresden, Apr 04 2024
a(2*n+1) = (2*n+1)*(2*n)*a(2*n-1) + ((2*n-1)!!)^2, using the double factorial notation from A001147. - Greg Dresden, Apr 11 2024

A296727 Expansion of e.g.f. arcsinh(x)/(1 - x).

Original entry on oeis.org

0, 1, 2, 5, 20, 109, 654, 4353, 34824, 324441, 3244410, 34795485, 417545820, 5536151685, 77506123590, 1144330385625, 18309286170000, 315366695240625, 5676600514331250, 106667957800963125, 2133359156019262500, 45229212438054868125, 995042673637207098750, 22696937952367956440625
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 19 2017

Keywords

Examples

			arcsinh(x)/(1 - x) = x/1! + 2*x^2/2! + 5*x^3/3! + 20*x^4/4! + 109*x^5/5! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(arcsinh(x)/(1 - x),x=0,24): seq(n!*coeff(a,x,n),n=0..23); # Paolo P. Lava, Mar 27 2019
  • Mathematica
    nmax = 23; CoefficientList[Series[ArcSinh[x]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 23; CoefficientList[Series[Log[x + Sqrt[1 + x^2]]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    first(n) = x='x+O('x^n); Vec(serlaplace(asinh(x)/(1 - x)), -n) \\ Iain Fox, Dec 19 2017

Formula

E.g.f.: log(x + sqrt(1 + x^2))/(1 - x).
a(n) ~ n! * log(1 + sqrt(2)). - Vaclav Kotesovec, Dec 20 2017

A296788 Expansion of e.g.f. exp(x*arcsinh(x)) (even powers only).

Original entry on oeis.org

1, 2, 8, 54, 104, 18810, -1648428, 247726374, -49445941200, 12841169289714, -4206667789245780, 1697448414191239710, -827415782970517712376, 479396168140498731959850, -325673237888367403728512700, 256401822876859593450127851030, -231597610351491427264049084814240
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 20 2017

Keywords

Examples

			exp(x*arcsinh(x)) = 1 + 2*x^2/2! + 8*x^4/4! + 54*x^6/6! + 104*x^8/8! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 16; Table[(CoefficientList[Series[Exp[x ArcSinh[x]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
    nmax = 16; Table[(CoefficientList[Series[(x + Sqrt[1 + x^2])^x, {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(n) = (2*n)! * [x^(2*n)] exp(x*arcsinh(x)).
a(n) ~ -(-1)^n * 2^(2*n) * n^(2*n-1) / exp(2*n + Pi/2). - Vaclav Kotesovec, Dec 21 2017

A003955 a(n) = (2*n + 4) * (1*3*5*...*(2*n+1))^2.

Original entry on oeis.org

4, 54, 1800, 110250, 10716300, 1512784350, 292183491600, 73958946311250, 23749039426612500, 9430743556307823750, 4537044990907363935000, 2600104866872495148416250, 1750070583471871734510937500, 1366930130733208386919792968750, 1226227455943070136959515612500000
Offset: 0

Views

Author

N. J. A. Sloane, Joe Keane (jgk(AT)jgk.org)

Keywords

Crossrefs

Cf. A001818.

Programs

  • GAP
    F:=Factorial;; List([0..20], n-> F(n+2)*F(n+1)*Binomial(2*n+2, n+1)^2/2^(2*n+1) ); # G. C. Greubel, Sep 24 2019
  • Magma
    F:=Factorial; [F(n+2)*F(n+1)*Binomial(2*n+2,n+1)^2/2^(2*n+1): n in [0..20]]; // G. C. Greubel, Sep 24 2019
    
  • Maple
    seq((n+2)!*(n+1)!*binomial(2*n+2, n+1)^2/2^(2*n+1), n=0..20); # G. C. Greubel, Sep 24 2019
  • Mathematica
    Table[(n+2)!*(n+1)!*Binomial[2*n+2, n+1]^2/2^(2*n+1), {n,0,20}] (* G. C. Greubel, Sep 24 2019 *)
  • PARI
    vector(21, n, (n+1)!*n!*binomial(2*n, n)^2/2^(2*n-1) ) \\ G. C. Greubel, Sep 24 2019
    
  • Sage
    f=factorial; [f(n+2)*f(n+1)*binomial(2*n+2,n+1)^2/2^(2*n+1) for n in (0..20)] # G. C. Greubel, Sep 24 2019
    

Formula

Equals (2*n+4) * A001818(n+1).
Equals (n+2)!*(n+1)!*binomial(2*n+2, n+1)^2/2^(2*n+1). - G. C. Greubel, Sep 24 2019

Extensions

More terms added by G. C. Greubel, Sep 24 2019

A151816 a(n) = (2*n)! - ((2*n-1)!!)^2.

Original entry on oeis.org

0, 1, 15, 495, 29295, 2735775, 370945575, 68916822975, 16813959537375, 5214921734397375, 2004231846526284375, 934957186489800849375, 520444368391989625959375, 340788940288324502208609375, 259324006920606914270844234375, 226933251813970116856323617109375, 226305693647403205116652558922109375
Offset: 0

Views

Author

N. J. A. Sloane, Jul 03 2009

Keywords

Comments

This was (incorrectly) proposed as a formula for A001818(2n).

Crossrefs

Bisection of A088979.

Programs

  • Maple
    seq((2*n)! - doublefactorial(2*n-1)^2, n=0..16); # Georg Fischer, Apr 19 2024

Formula

a(n) = A000142(2*n) - A001147(n)^2.
a(n) = A010050(n) - A001818(n).

Extensions

Definition corrected by Georg Fischer, Apr 18 2024

A204420 Triangle T(n,k) giving number of degree-2n permutations which decompose into exactly k cycles of even length, k=0..n.

Original entry on oeis.org

1, 0, 1, 0, 6, 3, 0, 120, 90, 15, 0, 5040, 4620, 1260, 105, 0, 362880, 378000, 132300, 18900, 945, 0, 39916800, 45571680, 18711000, 3534300, 311850, 10395, 0, 6227020800, 7628100480, 3511347840, 794593800, 94594500, 5675670, 135135
Offset: 0

Views

Author

José H. Nieto S., Jan 15 2012

Keywords

Comments

The row polynomials t(n,x):= sum(T(n,k)*x^k, k=0..n) satisfy the recurrence relation t(n,x) = (2n-1)*(x+2n-2)*t(n-1,x), with t(0,x)=1, hence t(n,x)=(2n-1)!!*x(x+2)(x+4)...(x+2n-2).

Examples

			1;
0,        1,
0,        6,        3;
0,      120,       90,       15;
0,     5040,     4620,     1260,     105;
0,   362880,   378000,   132300,   18900,    945;
0, 39916800, 45571680, 18711000, 3534300, 311850, 10395;
		

Crossrefs

Row sums give: A001818. - Alois P. Heinz, Jul 21 2013

Programs

  • Maple
    T_row:= proc(n) local k; seq(doublefactorial(2*n-1)*2^(n-k)* coeff(expand(pochhammer(x, n)), x, k), k=0..n) end: seq(T_row(n), n=0..10);
  • Mathematica
    nn=12;Prepend[Map[Prepend[Select[#,#>0&],0]&,Table[(Range[0, nn]!CoefficientList[ Series[(1-x^2)^(-y/2),{x,0,nn}],{x,y}])[[n]],{n,3,nn,2}]],{1}]//Grid (* Geoffrey Critzer, Jul 21 2013 *)
  • PARI
    T(n,k) = (2*n)!/(2^n*n!)*(-2)^(n-k)*stirling(n,k,1); \\ Andrew Howroyd, Feb 12 2018

Formula

T(n,k) = (2n-1)!!*2^(n-k)*A132393(n,k).
T(n,k) = (2n-1)T(n-1,k-1) + (2n-1)(2n-2)*T(n-1,k); T(0,0)=1, T(n,0)=0 for n>0,
T(n,n) = (2n-1)!! = A001147(n).
T(n,1) = (2n-1)! = A009445(n-1).
Previous Showing 61-70 of 92 results. Next