cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 62 results. Next

A060259 Denoting 4 consecutive primes by p, q, r and s, these are the values of q such that q and r have 10 as a primitive root, but p and s do not.

Original entry on oeis.org

59, 109, 179, 229, 571, 701, 937, 1019, 1171, 1429, 1619, 1777, 1811, 1847, 2063, 2269, 2297, 2339, 2383, 2447, 2731, 2819, 2927, 3257, 3299, 3331, 3461, 3571, 3593, 3617, 3701, 3833, 3967, 4139, 4259, 4421, 4567, 4691, 4937, 5087, 5153, 5179, 5417
Offset: 1

Views

Author

Jeff Burch, Mar 23 2001

Keywords

Comments

A prime p has 10 as a primitive root iff the length of the period of the decimal expansion of 1/p is p-1.

Crossrefs

Programs

  • Mathematica
    test[p_] := MultiplicativeOrder[10, p]===p-1; Prime/@Select[Range[2, 800], test[Prime[ # ]]&&test[Prime[ #+1]]&&!test[Prime[ #-1]]&&!test[Prime[ #+2]]&]
    Prime[#+1]&/@SequencePosition[Table[If[MultiplicativeOrder[10,p]===p-1,1,0],{p,Prime[Range[ 800]]}],{0,1,1,0}][[;;,1]] (* Harvey P. Dale, Nov 29 2023 *)

Extensions

Edited by Dean Hickerson, Jun 17 2002
Offset corrected by Amiram Eldar, Oct 03 2021

A060260 Numbers k such that prime(k), prime(k+1) and prime(k+2) have 10 as a primitive root, but prime(k-1) and prime(k+3) do not.

Original entry on oeis.org

55, 75, 141, 164, 184, 199, 358, 371, 380, 432, 559, 702, 745, 808, 825, 858, 882, 1077, 1097, 1279, 1299, 1303, 1328, 1408, 1431, 1486, 1502, 1558, 1654, 1702, 1724, 1744, 1768, 1820, 1835, 1873, 1901, 1905, 1953, 1977, 2050, 2148, 2216, 2220, 2267
Offset: 1

Views

Author

Jeff Burch, Mar 23 2001

Keywords

Comments

A prime p has 10 as a primitive root iff the length of the period of the decimal expansion of 1/p is p-1.

Crossrefs

The corresponding primes are in A060261.

Programs

  • Mathematica
    test[p_] := MultiplicativeOrder[10, p]===p-1; Select[Range[2, 2500], test[Prime[ # ]]&&test[Prime[ #+1]]&&test[Prime[ #+2]]&&!test[Prime[ #-1]]&&!test[Prime[ #+3]]&]

Extensions

Edited by Dean Hickerson, Jun 17 2002

A060261 Denoting 5 consecutive primes by p, q, r, s and t, these are the values of q such that q, r and s have 10 as a primitive root, but p and t do not.

Original entry on oeis.org

257, 379, 811, 971, 1097, 1217, 2411, 2539, 2617, 3011, 4051, 5297, 5657, 6211, 6337, 6659, 6857, 8647, 8807, 10457, 10651, 10687, 10937, 11731, 11939, 12451, 12577, 13099, 14011, 14537, 14731, 14887, 15137, 15607, 15737, 16091, 16411
Offset: 1

Views

Author

Jeff Burch, Mar 23 2001

Keywords

Comments

A prime p has 10 as a primitive root iff the length of the period of the decimal expansion of 1/p is p-1.

Crossrefs

The indices of these primes are in A060260.

Programs

  • Mathematica
    test[p_] := MultiplicativeOrder[10, p]===p-1; Prime/@Select[Range[2, 2500], test[Prime[ # ]]&&test[Prime[ #+1]]&&test[Prime[ #+2]]&&!test[Prime[ #-1]]&&!test[Prime[ #+3]]&]

Extensions

Edited by Dean Hickerson, Jun 17 2002
Offset corrected by Amiram Eldar, Oct 03 2021

A060262 a(n) is the smallest k such that prime(k), prime(k+1), ..., prime(k+n-1) all have 10 as a primitive root, but prime(k-1) and prime(k+n) do not.

Original entry on oeis.org

4, 17, 55, 7, 93, 754, 2611, 31092, 55207, 301252, 955428, 805428, 3651249, 3686621, 5510710, 42337888, 109670084, 590903433, 1010572448
Offset: 1

Views

Author

Jeff Burch, Mar 23 2001

Keywords

Comments

A prime p has 10 as a primitive root iff the length of the period of the decimal expansion of 1/p is p-1.
a(21) = 9774718453 and a(23) = 9525468065. - Amiram Eldar, Oct 03 2021

Crossrefs

Programs

  • Mathematica
    test[p_] := MultiplicativeOrder[10, p]===p-1; For[n=1, n<100, n++, a[n]=0]; v=4; While[True, For[n=1, test[Prime[v+n]], n++, Null]; If[a[n]==0, a[n]=v; Print["a(", n, ") = ", v]]; For[v+=n+1, !test[Prime[v]], v++, Null]]

Extensions

Edited by Dean Hickerson, Jun 17 2002
a(13)-a(19) from Amiram Eldar, Oct 03 2021

A060282 Periodic part of decimal expansion of reciprocal of n-th prime (leading 0's omitted).

Original entry on oeis.org

0, 3, 0, 142857, 9, 76923, 588235294117647, 52631578947368421, 434782608695652173913, 344827586206896551724137931, 32258064516129, 27, 2439, 23255813953488372093, 212765957446808510638297872340425531914893617
Offset: 1

Views

Author

N. J. A. Sloane, Mar 30 2001

Keywords

Examples

			1/7 = 0.142857142..., so a(4) = 142857.
1/11 = 0.09090909..., so a(5) = 9.
		

Crossrefs

Programs

  • Mathematica
    primePer[1] = primePer[3] = 0; primePer[n_] := FromDigits[(d = RealDigits[1/Prime[n]])[[1, 1]]] * 10^d[[2]]; Array[ primePer, 15] (* Amiram Eldar, Apr 28 2020 *)
  • PARI
    f(n)=if(n<4,n==2,znorder(Mod(10, prime(n)))) \\ A002371
    for(n=1,100,print1(floor(10^f(n)/prime(n)),","))

Formula

a(n) = floor(10^A002371(n)/prime(n)).
a(n) = 0 if and only if n = 1 or 3, corresponding to the primes 2 and 5, which are factors of 10. - Alonso del Arte, Apr 03 2020
ceiling(log_10(a(n))) = prime(n) - 1 if prime(n) is a full reptend prime (A001913). - Alonso del Arte, Apr 14 2020

Extensions

More terms from Klaus Brockhaus, Mar 30 2001

A087023 Maximal exponent in prime factorization of n-th cyclic number.

Original entry on oeis.org

3, 2, 4, 2, 2, 2, 2, 3, 3, 5, 2, 2, 2, 2, 2, 4, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 5, 2, 2, 2, 5, 2, 7, 2, 3, 2, 2, 5, 3, 4, 2, 3, 2, 2, 2, 3, 3, 2, 6, 2, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 30 2003

Keywords

Comments

A004042(n) factorized with Dario Alpern's ECM.
Extended using factors of 10^(A001913(n)-1)-1, see Kamada link.

Examples

			A004042(2) = 142857 = 37*13*11*3^3, therefore a(1) = 3.
		

Crossrefs

Formula

a(n) = A051903(A004042(n+1)).

Extensions

a(12)-a(42) from Ray Chandler, Nov 16 2011
a(43)-a(51) from Max Alekseyev, May 14 2022

A180340 Numbers with x digits such that the first x multiples are cyclic permutations of the number, leading 0's omitted (or cyclic numbers).

Original entry on oeis.org

142857, 588235294117647, 52631578947368421, 434782608695652173913, 344827586206896551724137931, 212765957446808510638297872340425531914893617, 169491525423728813559322033898305084745762711864406779661
Offset: 1

Views

Author

Ralph Kerchner (daxkerchner(AT)hotmail.com), Aug 28 2010

Keywords

Comments

Periodic part of decimal expansion of 1/A001913(n). The number of digits in each term (including leading zeros), plus one, makes the sequence A001913.

Examples

			142857 is in the sequence because it has 6 digits and the first 6 multiples of 142857 are 142857, 285714, 428571, 571428, 714285, and 857142, all cyclic permutations of the number. Also the first term of A001913 is 7, and 1/7 = 0.142857142857... .
588235294117647 is the next number because 0588235294117647 has 16 digits and the first 16 multiples are cyclic permutations of the number; the second term of A001913 is 17, and 1/17 = 0.05882352941176470588235294117647... .
		

Crossrefs

A006883 starting from the second term of A006883, omitting ending 0's.
The n-th terms of A060284 where n is a member of A001913.

Programs

  • Mathematica
    Map[(10^(# - 1) - 1)/# &, Select[Prime@ Range@ 17, MultiplicativeOrder[10, #] == # - 1 &]] (* Michael De Vlieger, Apr 03 2017 *)

Formula

a(n) = (10^(A001913(n)-1) - 1) / A001913(n).

A221981 Primes q = 4*p+1, where p == 2 (mod 5) is also prime.

Original entry on oeis.org

29, 149, 269, 389, 509, 1109, 1229, 1949, 2309, 2909, 3989, 4349, 5189, 5309, 6269, 6389, 7109, 7949, 8069, 9749, 10589, 10709, 11069, 11549, 12149, 12269, 13229, 13829, 14549, 15629, 16229, 17189, 17789, 18269, 19949, 20789, 22109, 22229, 24029, 24989, 25349, 25469, 25589, 26189, 26309, 28109, 28229, 28949, 29669, 30029, 30869, 31469, 32069, 33149, 34589, 34949, 36269, 36629, 36749, 37589
Offset: 1

Views

Author

Jonathan Sondow, Feb 02 2013

Keywords

Comments

Moree (2012) says that Chebyshev observed that if q = 4p + 1 is prime, with prime p == 2 (mod 5), then 10 is a primitive root modulo q.
If the sequence is infinite, then Artin's conjecture ("every nonsquare integer n != -1 is a primitive root of infinitely many primes q") is true for n = 10.
The corresponding primes p are A221982.
The sequence is infinite under Dickson's conjecture, thus Dickson's conjecture implies Artin's conjecture for n = 10. - Charles R Greathouse IV, Apr 18 2013
Two conjectures: (a) These primes have primitive root 40; (b) if a(n)*8 + 1 is prime then it has primitive root 10. - Davide Rotondo, Dec 31 2024

Examples

			29 is a member because 29 = 4*7 + 1 and 7 == 2 (mod 5) are prime.
		

References

  • P. L. Chebyshev, Theory of congruences, Elements of number theory, Chelsea, 1972, p. 306.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section F9, pp. 377-380.

Crossrefs

Programs

  • Maple
    A221981:=n->`if`(isprime(4*n+1) and isprime(n) and n mod 5 = 2, 4*n+1, NULL): seq(A221981(n), n=1..10^4); # Wesley Ivan Hurt, Dec 11 2015
  • Mathematica
    Select[ Prime[ Range[4000]], Mod[(# - 1)/4, 5] == 2 && PrimeQ[(# - 1)/4] &]
  • PARI
    is(n)=n%20==9 && isprime(n) && isprime(n\4) \\ Charles R Greathouse IV, Apr 18 2013

Formula

a(n) = 4*A221982(n) + 1.
a(n) >> n log^2 n. - Charles R Greathouse IV, Dec 30 2024

A000353 Primes p == 7, 19, 23 (mod 40) such that (p-1)/2 is also prime.

Original entry on oeis.org

7, 23, 47, 59, 167, 179, 263, 383, 503, 863, 887, 983, 1019, 1367, 1487, 1619, 1823, 2063, 2099, 2207, 2447, 2459, 2579, 2819, 2903, 3023, 3167, 3623, 3779, 3863, 4007, 4127, 4139, 4259, 4703, 5087, 5099, 5807, 5927, 5939, 6047, 6659, 6779, 6899, 6983, 7247
Offset: 1

Views

Author

Keywords

Comments

The decimal expansion of 1/a(n) will produce a stream of a(n)-1 pseudo-random digits. - Reinhard Zumkeller, Feb 10 2009
The condition in the name is sufficient for primes p such that the decimal expansion of 1/p recurs after p-1 digits, which is the maximum-possible cycle length. - Robert A. J. Matthews, Oct 31 2023

Crossrefs

Subset of A005385.
Subsequence of A001913, A006883.

Programs

  • Maple
    q:= p-> irem(p, 40) in {7, 19, 23} and andmap(isprime, [p, (p-1)/2]):
    select(q, [$1..10000])[];  # Alois P. Heinz, Oct 31 2023
  • Mathematica
    Select[Prime[Range[1000]], MatchQ[Mod[#, 40], 7|19|23] && PrimeQ[(#-1)/2]&] (* Jean-François Alcover, Feb 07 2016 *)
  • PARI
    is(n)=my(k=n%40); (k==7||k==19||k==23) && isprime(n\2) && isprime(n) \\ Charles R Greathouse IV, Nov 20 2014

Formula

a(n) = 2*A000355(n)+1. - Reinhard Zumkeller, Feb 10 2009

Extensions

More terms from Reinhard Zumkeller, Feb 10 2009

A069531 Smallest positive k such that 10^k + 1 is divisible by n, or 0 if no such number exists.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 1, 0, 3, 0, 0, 0, 8, 0, 9, 0, 0, 0, 11, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 23, 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 29, 0, 30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 22, 0, 3, 0, 0, 0, 0, 0, 48, 0, 0, 0, 2
Offset: 1

Views

Author

Amarnath Murthy, Apr 01 2002

Keywords

Comments

When a(n) is not zero, it is a divisor of phi(n). If n is a prime with primitive root 10 (cf. A001913) then a(n) = (n-1)/2.

Examples

			a(7) = a(13) = 3 as 1001 is divisible by 7 and 13. a(17) = 8 as 17 divides 100000001 = 10^8 + 1.
		

Crossrefs

Programs

  • PARI
    A069531(n) = { fordiv(eulerphi(n),k,if(!((1+(10^k))%n),return(k))); (0); }; \\ Antti Karttunen, Aug 23 2019

Extensions

More terms from Vladeta Jovovic, Apr 03 2002
Previous Showing 31-40 of 62 results. Next