A349839
Triangle T(n,k) built by placing all ones on the left edge, [1,0,0,0] repeated on the right edge, and filling the body using the Pascal recurrence T(n,k) = T(n-1,k) + T(n-1,k-1).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 1, 1, 4, 6, 4, 2, 0, 1, 5, 10, 10, 6, 2, 0, 1, 6, 15, 20, 16, 8, 2, 0, 1, 7, 21, 35, 36, 24, 10, 2, 1, 1, 8, 28, 56, 71, 60, 34, 12, 3, 0, 1, 9, 36, 84, 127, 131, 94, 46, 15, 3, 0, 1, 10, 45, 120, 211, 258, 225, 140, 61, 18, 3, 0, 1, 11, 55, 165, 331, 469, 483, 365, 201, 79, 21, 3, 1
Offset: 0
Triangle begins:
1;
1, 0;
1, 1, 0;
1, 2, 1, 0;
1, 3, 3, 1, 1;
1, 4, 6, 4, 2, 0;
1, 5, 10, 10, 6, 2, 0;
1, 6, 15, 20, 16, 8, 2, 0;
1, 7, 21, 35, 36, 24, 10, 2, 1;
1, 8, 28, 56, 71, 60, 34, 12, 3, 0;
1, 9, 36, 84, 127, 131, 94, 46, 15, 3, 0;
1, 10, 45, 120, 211, 258, 225, 140, 61, 18, 3, 0;
1, 11, 55, 165, 331, 469, 483, 365, 201, 79, 21, 3, 1;
-
Flatten[Table[CoefficientList[Series[(1-x*y)/((1-(x*y)^4)(1 - x - x*y)), {x, 0, 24}, {y, 0, 12}], {x, y}][[n+1,k+1]],{n,0,12},{k,0,n}]]
A008730
Molien series 1/((1-x)^2*(1-x^12)) for 3-dimensional group [2,n] = *22n.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 186, 192, 198, 204
Offset: 0
..1....2....3....4....5....6....7....8....9...10...11...12
.14...16...18...20...22...24...26...28...30...32...34...36
.39...42...45...48...51...54...57...60...63...66...69...72
.76...80...84...88...92...96..100..104..108..112..116..120
125..130..135..140..145..150..155..160..165..170..175..180
186..192..198..204..210..216..222..228..234..240..246..252
259..266..273..280..287..294..301..308..315..322..329..336
344..352..360..368..376..384..392..400..408..416..424..432
441..450..459..468..477..486..495..504..513..522..531..540
550..560..570..580..590..600..610..620..630..640..650..660
...
The columns are: A051866, A139267, A094159, A033579, A049452, A033581, A049453, A033580, A195319, A202804, A211014, A049598
- _Philippe Deléham_, Apr 03 2013
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 195
- Index entries for Molien series
- Index entries for linear recurrences with constant coefficients, signature (2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -2, 1).
-
R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)^2*(1-x^12)) )); // G. C. Greubel, Jul 30 2019
-
seq(coeff(series(1/(1-x)^2/(1-x^12), x, n+1), x, n), n=0..80);
-
CoefficientList[Series[1/((1-x)^2*(1-x^12)), {x,0,70}], x] (* Vincenzo Librandi, Jun 11 2013 *)
LinearRecurrence[{2,-1,0,0,0,0,0,0,0,0,0,1,-2,1},{1,2,3,4,5,6,7,8,9,10,11,12,14,16},70] (* Harvey P. Dale, Jan 01 2024 *)
-
my(x='x+O('x^70)); Vec(1/((1-x)^2*(1-x^12))) \\ G. C. Greubel, Jul 30 2019
-
(1/((1-x)^2*(1-x^12))).series(x, 70).coefficients(x, sparse=False) # G. C. Greubel, Jul 30 2019
A189074
Irregular triangle read by rows: T(n,k) = number of compositions of n with k inversions (n >= 0, 0 <= k <= floor(n^2/8)).
Original entry on oeis.org
1, 1, 2, 3, 1, 5, 2, 1, 7, 5, 3, 1, 11, 8, 7, 4, 2, 15, 15, 14, 10, 6, 3, 1, 22, 23, 26, 21, 17, 10, 6, 2, 1, 30, 37, 44, 42, 36, 27, 19, 11, 6, 3, 1, 42, 55, 73, 74, 73, 60, 50, 34, 24, 13, 8, 4, 2, 56, 83, 115, 128, 133, 123, 109, 87, 68, 48, 32, 20, 12, 6, 3, 1, 77, 118, 177, 209, 235, 230, 223, 192, 166, 129, 100, 70, 51, 31, 20, 11, 6, 2, 1
Offset: 0
T(4,0) = 5: [4], [1,3], [2,2], [1,1,2], [1,1,1,1] - all partitions of 4.
T(5,2) = 3: [2,2,1], [3,1,1], [1,2,1,1].
T(6,4) = 2: [2,2,1,1], [2,1,1,1,1].
Triangle begins:
1
1
2
3 1
5 2 1
7 5 3 1
11 8 7 4 2
15 15 14 10 6 3 1
22 23 26 21 17 10 6 2 1
...
-
T:= proc(n) option remember; local b, p;
b:=proc(m, i, l)
if m=0 then p(i):= p(i)+1
else seq(b(m-h, i+nops(select(j->jAlois P. Heinz, Apr 17 2011
-
T[n_] := T[n] = Module[{b, p}, b[m_, i_, l_List] := If[m == 0, p[i] = p[i] + 1, Table[b[m-h, i+Length[Select[ l, #]=0; b[n, 0, {}]; Table[p[i], {i, 0, Floor[n^2/8]}]]; Table[ T[n], {n, 0, 12}] // Flatten (* _Jean-François Alcover, Jan 17 2016, after Alois P. Heinz *)
A194200
[sum{(k*e) : 1<=k<=n}], where [ ]=floor, ( )=fractional part.
Original entry on oeis.org
0, 1, 1, 2, 2, 3, 3, 3, 4, 4, 5, 6, 6, 6, 7, 7, 7, 8, 9, 9, 9, 10, 11, 11, 12, 13, 13, 13, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 19, 20, 20, 21, 22, 22, 22, 23, 23, 23, 24, 25, 25, 25, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 32, 32, 33, 33, 34, 34, 34, 35, 36, 37
Offset: 1
a(5)=[(e)+(2e)+(3e)+4(e)+5(e)]
=[.718+.436+.154+.873+.591]
=[2.77423]=2.
-
r = E;
a[n_] := Floor[Sum[FractionalPart[k*r], {k, 1, n}]]
Table[a[n], {n, 1, 90}] (* A194200 *)
s[n_] := Sum[a[k], {k, 1, n}]
Table[s[n], {n, 1, 100}] (* A194201 *)
A078529
Exponent sequence for a bilinear recursive sequence.
Original entry on oeis.org
3, 1, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 9, 10, 12, 15, 18, 21, 24, 28, 32, 36, 40, 45, 51, 55, 60, 66, 72, 78, 84, 91, 98, 105, 112, 120, 129, 136, 144, 153, 162, 171, 180, 190, 200, 210, 220, 231, 243, 253, 264, 276, 288, 300, 312, 325, 338, 351, 364, 378, 393, 406, 420
Offset: 0
3 + x + x^7 + 2*x^8 + 3*x^9 + 4*x^10 + 6*x^11 + 9*x^12 + 10*x^13 + ...
- Index entries for two-way infinite sequences
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,0,0,0,0,1,-2,1).
-
LinearRecurrence[{2,-1,0,0,0,0,0,0,0,0,0,1,-2,1},{3,1,0,0,0,0,0,1,2,3,4,6,9,10},70] (* Harvey P. Dale, May 27 2017 *)
-
{a(n) = (n%12==0) + (n-4)^2\8}
A182568
a(n) = 2*floor(n/4)*(n - 2*(1 + floor(n/4))).
Original entry on oeis.org
0, 0, 0, 0, 0, 2, 4, 6, 8, 12, 16, 20, 24, 30, 36, 42, 48, 56, 64, 72, 80, 90, 100, 110, 120, 132, 144, 156, 168, 182, 196, 210, 224, 240, 256, 272, 288, 306, 324, 342, 360, 380, 400, 420, 440, 462, 484, 506, 528, 552, 576, 600, 624, 650, 676, 702, 728, 756, 784, 812, 840, 870, 900, 930, 960, 992, 1024, 1056, 1088, 1122, 1156, 1190, 1224, 1260, 1296, 1332, 1368
Offset: 0
- Pak Tung Ho, The toroidal crossing number of K_{4,n}, Discrete Math. 309 (2009), no. 10, 3238--3248. MR2526742(2010i:05088).
- Eric Weisstein's World of Mathematics, Complete Bipartite Graph
- Eric Weisstein's World of Mathematics, Toroidal Crossing Number
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,1,-2,1).
-
Table[2 Floor[n/4] (n - 2 (1 + Floor[n/4])), {n, 0, 20}] (* or *)
Table[(5 - (-1)^n + 2 (n - 4) n - 4 Cos[n Pi/2])/8, {n, 0, 20}] (* or *)
Table[(5 - (-1)^n - 2 (-I)^n - 2 I^n - 8 n + 2 n^2)/8, {n, 0, 20}] (* or *)
LinearRecurrence[{2, -1, 0, 1, -2, 1}, {0, 0, 0, 0, 0, 2}, 80] (* or *)
CoefficientList[Series[-2 x^5/((-1 + x)^3 (1 + x + x^2 + x^3)), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 11 2018 *)
A025842
Expansion of 1/((1-x^3)*(1-x^6)*(1-x^8)).
Original entry on oeis.org
1, 0, 0, 1, 0, 0, 2, 0, 1, 2, 0, 1, 3, 0, 2, 3, 1, 2, 4, 1, 3, 4, 2, 3, 6, 2, 4, 6, 3, 4, 8, 3, 6, 8, 4, 6, 10, 4, 8, 10, 6, 8, 12, 6, 10, 12, 8, 10, 15, 8, 12, 15, 10, 12, 18, 10, 15, 18, 12, 15, 21, 12, 18, 21, 15, 18, 24, 15, 21
Offset: 0
- Index entries for linear recurrences with constant coefficients, signature (0,0,1,0,0,1,0,1,-1,0,-1,0,0,-1,0,0,1).
-
CoefficientList[Series[1/((1-x^3)(1-x^6)(1-x^8)),{x,0,70}],x] (* Harvey P. Dale, Jan 25 2012 *)
Comments