cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 39 results. Next

A124182 A skewed version of triangular array A081277.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 0, 3, 4, 0, 0, 1, 8, 8, 0, 0, 0, 5, 20, 16, 0, 0, 0, 1, 18, 48, 32, 0, 0, 0, 0, 7, 56, 112, 64, 0, 0, 0, 0, 1, 32, 160, 256, 128, 0, 0, 0, 0, 0, 9, 120, 432, 576, 256, 0, 0, 0, 0, 0, 1, 50, 400, 1120, 1280, 512
Offset: 0

Views

Author

Philippe Deléham, Dec 05 2006

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows given by [0, 1, -1, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, 0, 0, 0, 0, 0, 0, 0,...] where DELTA is the operator defined in A084938. Falling diagonal sums in A052980.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1, 2;
  0, 0, 3, 4;
  0, 0, 1, 8,  8;
  0, 0, 0, 5, 20, 16;
  0, 0, 0, 1, 18, 48,  32;
  0, 0, 0, 0,  7, 56, 112,  64;
  0, 0, 0, 0,  1, 32, 160, 256,  128;
  0, 0, 0, 0,  0,  9, 120, 432,  576,  256;
  0, 0, 0, 0,  0,  1,  50, 400, 1120, 1280, 512;
		

Crossrefs

Cf. A025192 (column sums). Diagonals include A011782, A001792, A001793, A001794, A006974, A006975, A006976.

Formula

T(0,0)=T(1,1)=1, T(n,k)=0 if n < k or if k < 0, T(n,k) = T(n-2,k-1) + 2*T(n-1,k-1).
Sum_{k=0..n} x^k*T(n,k) = (-1)^n*A090965(n), (-1)^n*A084120(n), (-1)^n*A006012(n), A033999(n), A000007(n), A001333(n), A084059(n) for x = -4, -3, -2, -1, 0, 1, 2 respectively.
Sum_{k=0..floor(n/2)} T(n-k,k) = Fibonacci(n-1) = A000045(n-1).
Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A011782(n), A001333(n), A026150(n), A046717(n), A084057(n), A002533(n), A083098(n), A084058(n), A003665(n), A002535(n), A133294(n), A090042(n), A125816(n), A133343(n), A133345(n), A120612(n), A133356(n), A125818(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 respectively. - Philippe Deléham, Dec 26 2007
Sum_{k=0..n} T(n,k)*(-x)^(n-k) = A011782(n), A000012(n), A146559(n), A087455(n), A138230(n), A006495(n), A138229(n) for x= 0,1,2,3,4,5,6 respectively. - Philippe Deléham, Nov 14 2008
G.f.: (1-y*x)/(1-2y*x-y*x^2). - Philippe Deléham, Dec 04 2011
Sum_{k=0..n} T(n,k)^2 = A002002(n) for n > 0. - Philippe Deléham, Dec 04 2011

A253283 Triangle read by rows: coefficients of the partial fraction decomposition of [d^n/dx^n] (x/(1-x))^n/n!.

Original entry on oeis.org

1, 0, 1, 0, 2, 3, 0, 3, 12, 10, 0, 4, 30, 60, 35, 0, 5, 60, 210, 280, 126, 0, 6, 105, 560, 1260, 1260, 462, 0, 7, 168, 1260, 4200, 6930, 5544, 1716, 0, 8, 252, 2520, 11550, 27720, 36036, 24024, 6435, 0, 9, 360, 4620, 27720, 90090, 168168, 180180, 102960, 24310
Offset: 0

Views

Author

Peter Luschny, Mar 20 2015

Keywords

Comments

The rows give (up to sign) the coefficients in the expansion of the integer-valued polynomial (x+1)^2*(x+2)^2*(x+3)^2*...*(x+n)^2*(x+n+1) / (n!*(n+1)!) in the basis made of the binomial(x+i,i). - F. Chapoton, Oct 31 2022
This is related to the cluster fans of type B (see Fomin and Zelevinsky reference) - F. Chapoton, Nov 17 2022.

Examples

			[1]
[0, 1]
[0, 2,   3]
[0, 3,  12,   10]
[0, 4,  30,   60,   35]
[0, 5,  60,  210,  280,  126]
[0, 6, 105,  560, 1260, 1260,  462]
[0, 7, 168, 1260, 4200, 6930, 5544, 1716]
.
R_0(x) = 1/(x-1)^0.
R_1(x) = 0/(x-1)^1 + 1/(x-1)^2.
R_2(x) = 0/(x-1)^2 + 2/(x-1)^3 + 3/(x-1)^4.
R_3(x) = 0/(x-1)^3 + 3/(x-1)^4 + 12/(x-1)^5 + 10/(x-1)^6.
Then k!*[x^k] R_n(x) is A001286(k+2) and A001754(k+3) for n = 2, 3 respectively.
.
Seen as an array A(n, k) = binomial(n + k, k)*binomial(n + 2*k - 1, n + k):
[0] 1, 1,   3,   10,    35,    126,     462, ...
[1] 0, 2,  12,   60,   280,   1260,    5544, ...
[2] 0, 3,  30,  210,  1260,   6930,   36036, ...
[3] 0, 4,  60,  560,  4200,  27720,  168168, ...
[4] 0, 5, 105, 1260, 11550,  90090,  630630, ...
[5] 0, 6, 168, 2520, 27720, 252252, 2018016, ...
[6] 0, 7, 252, 4620, 60060, 630630, 5717712, ...
		

Crossrefs

T(n, n) = C(2*n-1, n) = A001700(n-1).
T(n, n-1) = A005430(n-1) for n >= 1.
T(n, n-2) = A051133(n-2) for n >= 2.
T(n, 2) = A027480(n-1) for n >= 2.
T(2*n, n) = A208881(n) for n >= 0.
A002002 (row sums).

Programs

  • Maple
    T_row := proc(n) local egf, k, F, t;
    if n=0 then RETURN(1) fi;
    egf := (x/(1-x))^n/n!; t := diff(egf,[x$n]);
    F := convert(t,parfrac,x);
    # print(seq(k!*coeff(series(F,x,20),x,k),k=0..7));
    # gives A000142, A001286, A001754, A001755, A001777, ...
    seq(coeff(F,(x-1)^(-k)),k=n..2*n) end:
    seq(print(T_row(n)),n=0..7);
    # 2nd version by R. J. Mathar, Dec 18 2016:
    A253283 := proc(n,k)
        binomial(n,k)*binomial(n+k-1,k-1) ;
    end proc:
  • Mathematica
    Table[Binomial[n, k] Binomial[n + k - 1, k - 1], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Feb 22 2017 *)
  • PARI
    T(n,k) = binomial(n,k)*binomial(n+k-1,k-1);
    tabl(nn) = for(n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, Apr 29 2018

Formula

The exponential generating functions for the rows of the square array L(n,k) = ((n+k)!/n!)*C(n+k-1,n-1) (associated to the unsigned Lah numbers) are given by R_n(x) = Sum_{k=0..n} T(n,k)/(x-1)^(n+k).
T(n,k) = C(n,k)*C(n+k-1,k-1).
Sum_{k=0..n} T(n,k) = (-1)^n*hypergeom([-n,n],[1],2) = (-1)^n*A182626(n).
Row generating function: Sum_{k>=1} T(n,k)*z^k = z*n* 2F1(1-n,n+1 ; 2; -z). - R. J. Mathar, Dec 18 2016
From Peter Bala, Feb 22 2017: (Start)
G.f.: (1/2)*( 1 + (1 - t)/sqrt(1 - 2*(2*x + 1)*t + t^2) ) = 1 + x*t + (2*x + 3*x^2)*t^2 + (3*x + 12*x^2 + 10*x^3)*t^3 + ....
n-th row polynomial R(n,x) = (1/2)*(LegendreP(n, 2*x + 1) - LegendreP(n-1, 2*x + 1)) for n >= 1.
The row polynomials are the black diamond product of the polynomials x^n and x^(n+1) (see Dukes and White 2016 for the definition of this product).
exp(Sum_{n >= 1} R(n,x)*t^n/n) = 1 + x*t + x*(1 + 2*x)*t^2 + x*(1 + 5*x + 5*x^2)*t^3 + ... is a g.f. for A033282, but with a different offset.
The polynomials P(n,x) := (-1)^n/n!*x^(2*n)*(d/dx)^n(1 + 1/x)^n begin 1, 3 + 2*x , 10 + 12*x + 3*x^2, ... and are the row polynomials for the row reverse of this triangle. (End)
Let Q(n, x) = Sum_{j=0..n} (-1)^(n - j)*A269944(n, j)*x^(2*j - 1) and P(x, y) = (LegendreP(x, 2*y + 1) - LegendreP(x-1, 2*y + 1)) / 2 (see Peter Bala above). Then n!*(n - 1)!*[y^n] P(x, y) = Q(n, x) for n >= 1. - Peter Luschny, Oct 31 2022
From Peter Bala, Apr 18 2024: (Start)
G.f.: Sum_{n >= 0} binomial(2*n-1, n)*(x*t)^n/(1 - t)^(2*n) = 1 + x*t + (2*x + 3*x^2)*t^2 + (3*x + 12*x^2 + 10*x^3)*t^3 + ....
n-th row polynomial R(n, x) = [t^n] ( (1 - t)/(1 - (1 + x)*t) )^n.
It follows that for integer x, the sequence {R(n, x) : n >= 0} satisfies the Gauss congruences: R(n*p^r, x) == R(n*p^(r-1), x) (mod p^r) for all primes p and positive integers n and r.
R(n, -2) = (-1)^n * A002003(n) for n >= 1.
R(n, 3) = A299507(n). (End)

A064861 Triangle of Sulanke numbers: T(n,k) = T(n,k-1) + a(n-1,k) for n+k even and a(n,k) = a(n,k-1) + 2*a(n-1,k) for n+k odd.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 5, 8, 4, 1, 6, 13, 12, 4, 1, 8, 25, 38, 28, 8, 1, 9, 33, 63, 66, 36, 8, 1, 11, 51, 129, 192, 168, 80, 16, 1, 12, 62, 180, 321, 360, 248, 96, 16, 1, 14, 86, 304, 681, 1002, 968, 592, 208, 32, 1, 15, 100, 390, 985, 1683, 1970, 1560, 800, 240, 32, 1, 17
Offset: 0

Views

Author

Barbara Haas Margolius (b.margolius(AT)csuohio.edu), Oct 10 2001

Keywords

Comments

When A064861 is regarded as a triangle read by rows, this is [1,0,-1,0,0,0,0,0,0,...] DELTA [2,-1,-1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 14 2008

Examples

			Table begins:
  1,  1,  1,   1,   1,  1,  1, 1, ...
  2,  3,  5,   6,   8,  9, 11, ...
  2,  8, 13,  25,  33, 51, ...
  4, 12, 38,  63, 129, ...
  4, 28, 66, 192, ...
		

Crossrefs

Cf. central Delannoy numbers a(n,n) = A001850(n), Delannoy numbers (same main diagonal): a(n,n) = A008288(n,n), a(n-1,n)=A002003(n), a(n,n+1)=A002002(n), a(n,1)=A058582(n), apparently a(n,n+2)=A050151(n).

Programs

  • Haskell
    a064861 n k = a064861_tabl !! n !! k
    a064861_row n = a064861_tabl !! n
    a064861_tabl = map fst $ iterate f ([1], 2) where
    f (xs, z) = (zipWith (+) ([0] ++ map (* z) xs) (xs ++ [0]), 3 - z)
    -- Reinhard Zumkeller, May 01 2014
  • Maple
    A064861 := proc(n,k) option remember; if n = 1 then 1; elif k = 0 then 0; else procname(n,k-1)+(3/2-1/2*(-1)^(n+k))*procname(n-1,k); fi; end;
    seq(seq(A064861(i,j-i),i=1..j-1),j=1..19);
  • Mathematica
    max = 12; se = Series[(1 + 2*x + y*x)/(1 - 2*x^2 - y^2*x^2 - 3*y*x^2), {x, 0, max}, {y, 0, max}]; cc = CoefficientList[se, {x, y}]; Flatten[ Table[ cc[[n, k]], {n, 1, max}, {k, n, 1, -1}]] (* Jean-François Alcover, Oct 21 2011, after g.f. *)
  • PARI
    a(n,m)=if(n<0 || m<0,0,polcoeff(polcoeff((1+2*x+y*x)/(1-2*x^2-y^2*x^2-3*y*x^2)+O(x^(n+m+1)),n+m),m))
    

Formula

G.f.: Sum_{m>=0} Sum_{n>=0} a_{m, n}*t^m*s^n = A(t,s) = (1+2*t+s)/(1-2*t^2-s^2-3*s*t).

A113139 Number triangle, equal to half of Delannoy square array A008288.

Original entry on oeis.org

1, 3, 1, 13, 5, 1, 63, 25, 7, 1, 321, 129, 41, 9, 1, 1683, 681, 231, 61, 11, 1, 8989, 3653, 1289, 377, 85, 13, 1, 48639, 19825, 7183, 2241, 575, 113, 15, 1, 265729, 108545, 40081, 13073, 3649, 833, 145, 17, 1, 1462563, 598417, 224143, 75517, 22363, 5641
Offset: 0

Views

Author

Paul Barry, Oct 15 2005

Keywords

Comments

Row sums are A047781(n+1). Diagonal sums are A113140. Inverse is A113141.

Examples

			Triangle begins
     1;
     3,    1;
    13,    5,    1;
    63,   25,    7,   1;
   321,  129,   41,   9,  1;
  1683,  681,  231,  61, 11,  1;
  8989, 3653, 1289, 377, 85, 13, 1;
  ...
A113139 as a square array = A110171 * A008288:
  / 1   1   1   1 ... \   / 1         \ / 1 1  1  1 ...\
  | 3   5   7   9 ... |   | 2  1       || 1 3  5  7 ...|
  |13  25  41  61 ... | = | 8  4 1     || 1 5 13 25 ...|
  |63 129 231 377 ... |   |38 18 6 1   || 1 7 25 63 .. |
  |...                |   |...         || 1...         |
- _Peter Bala_, Dec 09 2015
		

Crossrefs

A001850 (column 0), A002002 (column 1), A026002 (column 2), A190666 (column 3), A047781 (row sums), A113140 (diagonal sums), A113141 (matrix inverse). Cf. A006318, A008288, A110171.

Programs

  • Maple
    T := (n,k) -> (-1)^(n-k)*hypergeom([n+1, -n+k], [1], 2):
    seq(seq(simplify(T(n,k)),k=0..n),n=0..8); # Peter Luschny, Mar 02 2017
  • Mathematica
    Table[Sum[Binomial[n - k, j] Binomial[n + j, k + j], {j, 0, n}], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 09 2015 *)

Formula

T(n, k) = Sum_{j=0..n} C(n-k, j)*C(n+j, k+j).
T(n, k) = Sum_{j=0..n} C(n, j)*C(n-k, j-k)*2^(n-j).
From Peter Bala, Dec 09 2015: (Start)
T(n,k) = A008288(n - k, n).
O.g.f.: 2/( sqrt(x^2 - 6*x + 1)*(t*sqrt(x^2 - 6*x + 1) + t*x - t + 2) ) = 1 + (3 + t)*x + (13 + 5*t + t^2)*x^2 + ....
Riordan array (f(x), x*g(x)), where f(x) = 1/sqrt(1 - 6*x + x^2) is the o.g.f. for the central Delannoy numbers, A001850, and g(x) = 1/x* revert( x*(1 - x)/(1 + x) ) = 1 + 2*x + 6*x^2 + 22*x^3 + 90*x^4 + 394*x^5 + ... is the o.g.f. for the large Schroder numbers, A006318.
Read as a square array, this is the generalized Riordan array (f(x), g(x)) in the sense of the Bala link, which factorizes as (1 + x*g'(x)/g(x), x*g(x)) * (1/(1 - x), (1 + x)/(1 - x)) = A110171 * A008288. See the example below. (End)
T(n,k) = (-1)^(n-k)*hypergeom([n+1, -n+k], [1], 2). - Peter Luschny, Mar 02 2017
From Peter Bala, Feb 16 2020: (Start)
T(n,k) = P(n-k, k, 0, 3), where P(n, alpha, beta, x) is the n-th Jacobi polynomial with parameters alpha and beta.
T(n,k) = binomial(n,k) * hypergeom( [n + 1, k - n], [k + 1], -1 ).
The n-th row polynomial in descending powers of x is the n-th Taylor polynomial of the rational function (1 + x)^n/(1 - x)^(n+1) about 0. For example, for n = 4, (1 + x)^4/(1 - x)^5 = 1 + 9*x + 41*x^2 + 129*x^3 + 321*x^4 + O(x^5). Cf. A110171. (End)

A201701 Riordan triangle ((1-x)/(1-2*x), x^2/(1-2*x)).

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 4, 3, 0, 0, 8, 8, 1, 0, 0, 16, 20, 5, 0, 0, 0, 32, 48, 18, 1, 0, 0, 0, 64, 112, 56, 7, 0, 0, 0, 0, 128, 256, 160, 32, 1, 0, 0, 0, 0, 256, 576, 432, 120, 9, 0, 0, 0, 0, 0, 512, 1280, 1120, 400, 50, 1, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Dec 03 2011

Keywords

Comments

Triangle T(n,k), read by rows, given by (1,1,0,0,0,0,0,0,0,...) DELTA (0,1,-1,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.
Skewed version of triangle in A200139.
Triangle without zeros: A207537.
For the version with negative odd numbered columns, which is Riordan ((1-x)/(1-2*x), -x^2/(1-2*x)) see comments on A028297 and A039991. - Wolfdieter Lang, Aug 06 2014
This is an example of a stretched Riordan array in the terminology of Section 2 of Corsani et al. - Peter Bala, Jul 14 2015

Examples

			The triangle T(n,k) begins:
  n\k      0     1     2     3     4    5   6  7 8 9 10 11 ...
  0:       1
  1:       1     0
  2:       2     1     0
  3:       4     3     0     0
  4:       8     8     1     0     0
  5:      16    20     5     0     0    0
  6:      32    48    18     1     0    0   0
  7:      64   112    56     7     0    0   0  0
  8:     128   256   160    32     1    0   0  0 0
  9:     256   576   432   120     9    0   0  0 0 0
  10:    512  1280  1120   400    50    1   0  0 0 0  0
  11:   1024  2816  2816  1232   220   11   0  0 0 0  0  0
  ...  reformatted and extended. - _Wolfdieter Lang_, Aug 06 2014
		

Crossrefs

Diagonals sums are in A052980.
Cf. A028297, A081265, A124182, A131577, A039991 (zero-columns deleted, unsigned and zeros appended).
Cf. A028297 (signed version, zeros deleted). Cf. A034839.

Programs

  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    RiordanArray[(1 - #)/(1 - 2 #)&, #^2/(1 - 2 #)&, 11] // Flatten (* Jean-François Alcover, Jul 16 2019 *)

Formula

T(n,k) = 2*T(n-1,k) + T(n-2,k-1) with T(0,0) = T(1,0) = 1, T(1,1) = 0 and T(n,k) = 0 for k<0 or for n
Sum_{k=0..n} T(n,k)^2 = A002002(n) for n>0.
Sum_{k=0..n} T(n,k)*x^k = A138229(n), A006495(n), A138230(n), A087455(n), A146559(n), A000012(n), A011782(n), A001333(n), A026150(n), A046717(n), A084057(n), A002533(n), A083098(n), A084058(n), A003665(n), A002535(n), A133294(n), A090042(n), A125816(n), A133343(n), A133345(n), A120612(n), A133356(n), A125818(n) for x = -6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 respectively.
G.f.: (1-x)/(1-2*x-y*x^2). - Philippe Deléham, Mar 03 2012
From Peter Bala, Jul 14 2015: (Start)
Factorizes as A034839 * A007318 = (1/(1 - x), x^2/(1 - x)^2) * (1/(1 - x), x/(1 - x)) as a product of Riordan arrays.
T(n,k) = Sum_{i = k..floor(n/2)} binomial(n,2*i) *binomial(i,k). (End)

Extensions

Name changed, keyword:easy added, crossrefs A028297 and A039991 added, and g.f. corrected by Wolfdieter Lang, Aug 06 2014

A062110 A(n,k) is the coefficient of x^k in (1-x)^n/(1-2*x)^n for n, k >= 0; Table A read by descending antidiagonals.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 4, 5, 3, 1, 0, 8, 12, 9, 4, 1, 0, 16, 28, 25, 14, 5, 1, 0, 32, 64, 66, 44, 20, 6, 1, 0, 64, 144, 168, 129, 70, 27, 7, 1, 0, 128, 320, 416, 360, 225, 104, 35, 8, 1, 0, 256, 704, 1008, 968, 681, 363, 147, 44, 9, 1, 0, 512, 1536, 2400, 2528, 1970
Offset: 0

Author

Henry Bottomley, May 30 2001

Keywords

Comments

The triangular version of this square array is defined by T(n,k) = A(k,n-k) for 0 <= k <= n. Conversely, A(n,k) = T(n+k,n) for n,k >= 0. We have [o.g.f of T](x,y) = [o.g.f. of A](x*y, x) and [o.g.f. of A](x,y) = [o.g.f. of T](y,x/y). - Petros Hadjicostas, Feb 11 2021
From Paul Barry, Nov 10 2008: (Start)
As number triangle, Riordan array (1, x(1-x)/(1-2x)). A062110*A007318 is A147703.
[0,1,1,0,0,0,....] DELTA [1,0,0,0,.....]. (Philippe Deléham's DELTA is defined in A084938.) (End)
Modulo 2, this triangle T becomes triangle A106344. - Philippe Deléham, Dec 18 2008

Examples

			Table A(n,k) (with rows n >= 0 and columns k >= 0) begins:
  1, 0,  0,   0,   0,    0,    0,     0,     0,     0, ...
  1, 1,  2,   4,   8,   16,   32,    64,   128,   256, ...
  1, 2,  5,  12,  28,   64,  144,   320,   704,  1536, ...
  1, 3,  9,  25,  66,  168,  416,  1008,  2400,  5632, ...
  1, 4, 14,  44, 129,  360,  968,  2528,  6448, 16128, ...
  1, 5, 20,  70, 225,  681, 1970,  5500, 14920, 39520, ...
  1, 6, 27, 104, 363, 1182, 3653, 10836, 31092, 86784, ...
  ... - _Petros Hadjicostas_, Feb 15 2021
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
  1;
  0,   1;
  0,   1,   1;
  0,   2,   2,   1;
  0,   4,   5,   3,   1;
  0,   8,  12,   9,   4,   1;
  0,  16,  28,  25,  14,   5,   1;
  0,  32,  64,  66,  44,  20,   6,   1;
  0,  64, 144, 168, 129,  70,  27,   7,   1;
  0, 128, 320, 416, 360, 225, 104,  35,   8,   1;
  ... - _Philippe Deléham_, Nov 30 2008
		

Crossrefs

Columns of A include A000012, A001477, A000096, A000297.
Main diagonal of A is A002002.
Table A(n, k) is a multiple of 2^(k-n); dividing by this gives a table similar to A050143 except at the edges.
Essentially the same array as A105306, A160232.

Programs

  • Mathematica
    t[n_, n_] = 1; t[n_, k_] := 2^(n-2*k)*k*Hypergeometric2F1[1-k, n-k+1, 2, -1]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 30 2013, after Philippe Deléham + symbolic sum *)
  • PARI
    a(i,j)=if(i<0 || j<0,0,polcoeff(((1-x)/(1-2*x)+x*O(x^j))^i,j))

Formula

Formulas for the square array (A(n,k): n,k >= 0):
A(n, k) = A(n-1, k) + Sum_{0 <= j < k} A(n, j) for n >= 1 and k >= 0 with A(0, k) = 0^k for k >= 0.
G.f.: 1/(1-x*(1-y)/(1-2*y)) = Sum_{i, j >= 0} A(i, j) x^i*y^j.
From Petros Hadjicostas, Feb 15 2021: (Start)
A(n,k) = 2^(k-n)*n*hypergeom([1-n, k+1], [2], -1) for n >= 0 and k >= 1.
A(n,k) = 2*A(n,k-1) + A(n-1,k) - A(n-1,k-1) for n,k >= 1 with A(n,0) = 1 for n >= 0 and A(0,k) = 0 for k >= 1. (End)
Formulas for the triangle (T(n,k): 0 <= k <= n):
From Philippe Deléham, Aug 01 2006: (Start)
T(n,k) = A121462(n+1,k+1)*2^(n-2*k) for 0 <= k < n.
T(n,k) = 2^(n-2*k)*k*hypergeom([1-k, n-k+1], [2], -1) for 0 <= k < n. (End)
Sum_{k=0..n} T(n,k)*x^k = A152239(n), A152223(n), A152185(n), A152174(n), A152167(n), A152166(n), A152163(n), A000007(n), A001519(n), A006012(n), A081704(n), A082761(n), A147837(n), A147838(n), A147839(n), A147840(n), A147841(n), for x = -7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Dec 09 2008
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) for 1 <= k <= n-1 with T(0,0) = T(1,1) = T(2,1) = T(2,2) = 1, T(1,0) = T(2,0) = 0, and T(n,k) = 0 if k > n or if k < 0. - Philippe Deléham, Oct 30 2013
G.f.: Sum_{n.k>=0} T(n,k)*x^n*y^k = (1 - 2*x)/(x^2*y - x*y - 2*x + 1). - Petros Hadjicostas, Feb 15 2021

Extensions

Various sections edited by Petros Hadjicostas, Feb 15 2021

A182626 a(n) = Hypergeometric([-n, n], [1], 2).

Original entry on oeis.org

1, -1, 5, -25, 129, -681, 3653, -19825, 108545, -598417, 3317445, -18474633, 103274625, -579168825, 3256957317, -18359266785, 103706427393, -586889743905, 3326741166725, -18885056428537, 107347191941249, -610916200215241
Offset: 0

Author

Michael Somos, Feb 06 2011

Keywords

Examples

			G.f. = 1 - x + 5*x^2 - 25*x^3 + 129*x^4 - 681*x^5 + 3653*x^6 - 19825*x^7 + ...
		

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!(1/2 + 1/2*(1 + x)/Sqrt(1 + 6*x + x^2))); // G. C. Greubel, Aug 14 2018
  • Maple
    seq(simplify(hypergeom([-n, n],[1],2)), n=0..21); # Peter Luschny, Mar 23 2015
  • Mathematica
    a[n_] := Hypergeometric2F1[ -n, n, 1, 2]; Array[a, 20, 0]
  • PARI
    {a(n) = sum( k=0, abs(n), 2^k * prod( i=0, k-1, i^2 - n^2 ) / k!^2)}
    

Formula

a(-n) = a(n). a(n) = (-1)^n * A002002(n) if n>0. a(n) = (-1)^n * A026003(2*n - 1) if n>0.
G.f.: 1 / ( 1 + x / (1 + 4*x / (1 - x^2 / (1 + 4*x / (1 - x^2 / (1 + 4*x / ...)))))). - Michael Somos, Jan 03 2013
a(n) = (-1)^n*Sum_{k=0..n} A253283(n,k). - Peter Luschny, Mar 23 2015
From Peter Bala, Jun 17 2015: (Start)
a(n) = Sum_{k = 0..n} (-2)^k*binomial(n,k)*binomial(n+k-1,k) = (-1)^n*Sum_{k = 0..n-1} binomial(n,k+1)*binomial(n+k,k) = -Sum_{k = 0..n-1} (-2)^k*binomial(n-1,k)*binomial(n+k,k).
a(n) = -R(n-1,-2) for n >= 1, where R(n,x) denotes the n-th row polynomial of A178301.
a(n) = [x^n] ((x - 1)/(1 - 2*x))^n. Cf. A001003(n) = (-1)^(n+1)/(n+1)*[x^n] ((x - 1)/(1 - 2*x))^(n+1).
O.g.f.: 1/2 + 1/2*(1 + x)/sqrt(1 + 6*x + x^2).
exp( Sum_{n >= 1} a(n)*(-x)^n/n ) = 1 + x + 3*x^2 + 11*x^3 + 45*x^4 + ... is the o.g.f. for A001003.
Recurrence: n*(3 - 2*n )*a(n) = 2*(6*n^2 - 12*n + 5)*a(n-1) + (2*n - 1)*(n - 2)*a(n-2) with a(0) = 1, a(1) = -1. (End)

A190666 Number of walks from (0,0) to (n+3,n) which take steps from {E, N, NE}.

Original entry on oeis.org

1, 9, 61, 377, 2241, 13073, 75517, 433905, 2485825, 14218905, 81270333, 464387817, 2653649025, 15167050785, 86716873725, 495998874593, 2838240338817, 16248650965289, 93065296937533, 533285164334169, 3057236753252161, 17534423944871729, 100609937775369981
Offset: 0

Author

Shanzhen Gao, May 25 2011

Keywords

Comments

+-3-diagonal of A008288 as a square array. - Shel Kaphan, Jan 07 2023

References

  • S. Gao, H. Niederhausen, Counting New Lattice Paths and Walks with Several Step Vectors (submitted to Congr. Numer.). - Shanzhen Gao, May 25 2011

Crossrefs

Programs

  • Maple
    b:= proc(i, j) option remember;
          if i<0 or j<0 then 0
        elif i=0 and j=0 then 1
        else b(i-1, j) +b(i, j-1) +b(i-1, j-1)
          fi
        end:
    a:= n-> b(n+3, n):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 28 2011
  • Mathematica
    b[i_, j_] /; i<0 || j<0 = 0; b[0, 0] = 1; b[i_, j_]:= b[i, j]= b[i-1, j] + b[i, j-1] + b[i-1, j-1]; a[n_] := b[n+3, n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 01 2011, after Maple prog. *)
    CoefficientList[Series[(-1+3*x-x^2+(1-6*x+6*x^2-x^3)/Sqrt[x^2-6*x+1])/(2*x^3), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
    Table[(-1)^n Hypergeometric2F1[-n, n+4, 1, 2], {n,0,22}] (* Peter Luschny, Mar 02 2017 *)

Formula

a(n) = Sum_{k=0..n} C(n,k) * C(n+k+3,k+3) = A113139 (n+3,3). - Alois P. Heinz, Jun 01 2011
G.f.: (-1 + 3*x - x^2 + (1 - 6*x + 6*x^2 - x^3)/sqrt(x^2 - 6*x + 1))/(2*x^3). - Alois P. Heinz, Jun 03 2011
Recurrence: n*(n+3)*a(n) = (5*n^2 + 15*n + 16)*a(n-1) + (5*n^2 - 5*n + 6)*a(n-2) - (n-2)*(n+1)*a(n-3). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ sqrt(1632 + 1154*sqrt(2))*(3 + 2*sqrt(2))^n/(4*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 20 2012
From Peter Bala, Mar 02 2017: (Start)
a(n) = (1/2^(n+1))*Sum_{k >= 3} (1/2^k)*binomial(n+k, k)*binomial(n+k, n+3).
a(n) = (-1)^n*Sum_{k = 0..n} (-2)^k*binomial(n,k) * binomial(n+k+3,k).
n*(n+3)*(2*n + 1)*a(n) = 6*(n+1)*(2*n^2 + 4*n + 3)*a(n-1) - (n-1)*(n+2)*(2*n + 3)*a(n-2) with a(0) = 1 and a(1) = 9. (End)
a(n) = (-1)^n*hypergeom([-n, n+4], [1], 2). - Peter Luschny, Mar 02 2017

A047666 Square array a(n,k) read by antidiagonals: a(n,1)=n, a(1,k)=k, a(n,k) = a(n-1,k-1) + a(n-1,k) + a(n,k-1).

Original entry on oeis.org

1, 2, 2, 3, 5, 3, 4, 10, 10, 4, 5, 17, 25, 17, 5, 6, 26, 52, 52, 26, 6, 7, 37, 95, 129, 95, 37, 7, 8, 50, 158, 276, 276, 158, 50, 8, 9, 65, 245, 529, 681, 529, 245, 65, 9, 10, 82, 360, 932, 1486, 1486, 932, 360, 82, 10, 11, 101, 507, 1537, 2947, 3653
Offset: 1

Keywords

Crossrefs

Main diagonal is A002002. Rows give A002522, A047667, A047668, ...

Programs

  • Maple
    A047666 := proc(n,k) option remember; if n = 1 then k; elif k = 1 then n; else A047666(n-1,k-1)+A047666(n,k-1)+A047666(n-1,k); fi; end;
  • Mathematica
    nmax = 11; a[1, k_] := k; a[n_, 1] := n; a[n_, k_] := a[n, k] = a[n-1, k-1] + a[n, k-1] + a[n-1, k]; Flatten[ Table[ a[n-k+1, k], {n, 1, nmax}, {k, 1, n}]] (* Jean-François Alcover, Feb 10 2012 *)

Formula

T(n, m) = (Sum_{i=1..n-m}(2*i+1)*U(n-i-1, m-1)) + (Sum_{i=1..m} (2*i+1)*U(n-2, m-i)) - U(n-2, m-1) where U(n, m) = A008288(n, m). - Floor van Lamoen, Aug 16 2001

A378613 a(n) = Sum_{k=0..n} binomial(4*n+k-1,k) * binomial(n-1,n-k).

Original entry on oeis.org

1, 4, 44, 532, 6748, 88024, 1169444, 15738328, 213842716, 2927097712, 40302226944, 557565134196, 7744326799684, 107925260553088, 1508352084699224, 21132667178858512, 296716493251706652, 4174006026061733232, 58816013334014598032, 830025065117154066064, 11729345524163083673648
Offset: 0

Author

Seiichi Manyama, Dec 01 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(4*n+k-1, k)*binomial(n-1, n-k));

Formula

a(n) = [x^n] 1/(1 - x/(1 - x))^(4*n).
a(n) = (1/8)^n * [x^(4*n)] 4/(1 - x/(1 - x))^n for n > 0.
Previous Showing 11-20 of 39 results. Next