A093890 Number of primes arising as the sum of one or more divisors of n.
0, 2, 1, 4, 1, 5, 1, 6, 2, 7, 1, 9, 1, 5, 4, 11, 1, 12, 1, 13, 5, 5, 1, 17, 2, 5, 4, 16, 1, 20, 1, 18, 4, 6, 6, 24, 1, 5, 5, 24, 1, 24, 1, 18, 11, 5, 1, 30, 1, 15, 3, 18, 1, 30, 6, 30, 5, 7, 1, 39, 1, 3, 18, 31, 6, 34, 1, 16, 3, 34, 1, 44, 1, 4, 13, 16, 4, 39, 1, 42, 5, 5, 1, 48, 5, 5, 2, 41, 1, 51, 2
Offset: 1
Keywords
Examples
a(4) = 4, the divisors of 4 are 1, 2 and 4. Primes arising are 2, 3 = 1 + 2, 5 = 1 + 4 and 7 = 1 + 2 + 4.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Do[l = Subsets[Divisors[n]]; l = Union[Map[Plus @@ #&, l]]; Print[Length[Select[l, PrimeQ]]], {n, 100}] (* Ryan Propper, Jun 04 2006 *) CountPrimes[n_] := Module[{d=Divisors[n],t,lim,x}, t=CoefficientList[Product[1+x^i, {i,d}], x]; lim=PrimePi[Length[t]-1]; Count[t[[1+Prime[Range[lim]]]], ?(#>0 &)]]; Table[CountPrimes[n], {n,100}] (* _T. D. Noe, Mar 19 2010 *)
Extensions
Corrected and extended by Ryan Propper, Jun 04 2006
Comments