cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 79 results. Next

A093890 Number of primes arising as the sum of one or more divisors of n.

Original entry on oeis.org

0, 2, 1, 4, 1, 5, 1, 6, 2, 7, 1, 9, 1, 5, 4, 11, 1, 12, 1, 13, 5, 5, 1, 17, 2, 5, 4, 16, 1, 20, 1, 18, 4, 6, 6, 24, 1, 5, 5, 24, 1, 24, 1, 18, 11, 5, 1, 30, 1, 15, 3, 18, 1, 30, 6, 30, 5, 7, 1, 39, 1, 3, 18, 31, 6, 34, 1, 16, 3, 34, 1, 44, 1, 4, 13, 16, 4, 39, 1, 42, 5, 5, 1, 48, 5, 5, 2, 41, 1, 51, 2
Offset: 1

Views

Author

Amarnath Murthy, Apr 23 2004

Keywords

Comments

a(2^n) = pi(2^(n+1)-1).
Except for n=3 and n=42, it appears that the records occur at the highly abundant numbers A002093. The record values appear to be pi(sigma(n)) for n in A002093, which means that these n are members of A093891. [T. D. Noe, Mar 19 2010]

Examples

			a(4) = 4, the divisors of 4 are 1, 2 and 4.
Primes arising are 2, 3 = 1 + 2, 5 = 1 + 4 and 7 = 1 + 2 + 4.
		

Crossrefs

Cf. A161510 (primes counted with repetition). [T. D. Noe, Mar 19 2010]

Programs

  • Mathematica
    Do[l = Subsets[Divisors[n]]; l = Union[Map[Plus @@ #&, l]]; Print[Length[Select[l, PrimeQ]]], {n, 100}] (* Ryan Propper, Jun 04 2006 *)
    CountPrimes[n_] := Module[{d=Divisors[n],t,lim,x}, t=CoefficientList[Product[1+x^i, {i,d}], x]; lim=PrimePi[Length[t]-1]; Count[t[[1+Prime[Range[lim]]]], ?(#>0 &)]]; Table[CountPrimes[n], {n,100}] (* _T. D. Noe, Mar 19 2010 *)

Extensions

Corrected and extended by Ryan Propper, Jun 04 2006

A307866 K-champion numbers: numbers m such that K(m) > K(j) for all j < m, where K(m) is the Kalmár function (A074206).

Original entry on oeis.org

0, 1, 4, 6, 8, 12, 24, 36, 48, 72, 96, 120, 144, 192, 240, 288, 360, 432, 480, 576, 720, 864, 960, 1152, 1440, 1728, 1920, 2160, 2304, 2880, 3456, 4320, 5760, 6912, 8640, 11520, 17280, 23040, 25920, 30240, 34560, 46080, 51840, 60480, 69120, 86400, 103680, 120960
Offset: 1

Views

Author

Amiram Eldar, May 02 2019

Keywords

Comments

The corresponding record values are 0, 1, 2, 3, 4, 8, 20, 26, 48, 76, 112, 132, 208, ... (see the link for more values).
Deléglise et al. (2008) proved that the number of powerful (A001694) terms in this sequence is finite. They ask whether a(391) = 485432135516160000 (the 112th powerful term) is the largest. - Amiram Eldar, Aug 20 2019
Is abs(omega(a(n)) - omega(a(n+1))) <= 1? (Cf. A001221.) - David A. Corneth, Apr 16 2020

Crossrefs

Cf. A001221, A001694, A002093, A033833, A074206, A163272, A330686 (after primorial deflation).

Programs

  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := a[n] = Total[a /@ Most[Divisors[n]]]; s = {}; am=-1; Do[a1 = a[n]; If[a1>am, am=a1; AppendTo[s, n]], {n, 0, 10000}]; s

Formula

For n >= 1, a(1+n) = A108951(A330686(n)). - Antti Karttunen, Dec 31 2019

A327634 Infinitary highly abundant numbers: numbers m such that isigma(m) > isigma(k) for all k < m, where isigma(k) is the sum of infinitary divisors of n (A049417).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 18, 21, 22, 24, 30, 40, 42, 54, 66, 72, 78, 88, 96, 102, 114, 120, 168, 210, 216, 264, 312, 330, 360, 378, 384, 408, 456, 480, 510, 546, 552, 600, 672, 690, 696, 744, 840, 1080, 1320, 1512, 1560, 1848, 1920, 2040, 2184, 2280, 2688
Offset: 1

Views

Author

Amiram Eldar, Sep 20 2019

Keywords

Comments

The infinitary version of A002093.

Examples

			The first 10 values of isigma(k) for k = 1 to 10 are: 1, 3, 4, 5, 6, 12, 8, 15, 10, 18. Record values are reached for all these values of k except for 7 and 9, therefore the sequence begins with 1, 2, 3, 4, 5, 6, 8, 10, ...
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], ?(# == 1 &)])); isigma[1] = 1; isigma[n] := Times @@ (Flatten @ (f @@@ FactorInteger[n]) + 1); seq = {};sm = 0; Do[s = isigma[n]; If[s > sm, sm = s; AppendTo[seq, n]], {n, 1, 10^4}]; seq

A007626 Sum of divisors of superabundant numbers (A004394).

Original entry on oeis.org

1, 3, 7, 12, 28, 60, 91, 124, 168, 360, 546, 744, 1170, 2418, 2880, 4368, 5952, 9360, 19344, 39312, 59520, 99944, 112320, 232128, 471744, 714240, 1199328, 1451520, 2437344, 2926080, 3249792, 6604416, 9999360
Offset: 1

Views

Author

Keywords

Comments

Local maxima of sigma(n), the sum of divisors function A000203.
Same as A063072 for the first 19 terms. - T. D. Noe, Jul 01 2008

Crossrefs

See A034885 and A002093 for another version.

Programs

  • Mathematica
    Reap[ For[ n=1; a=0, n <= 3*10^6, n++, s = DivisorSigma[1, n]; b = s/n; If[ b>a, a=b; Print[s]; Sow[s]]]][[2, 1]] (* Jean-François Alcover, Apr 02 2013 *)
    Join[{1},DeleteDuplicates[Select[{#[[1]],#[[2]],#[[2]]/#[[1]]}&/@Table[ {n,DivisorSigma[1,n]}, {n,10^6}],#[[3]]>1&],GreaterEqual[#1[[3]],#2[[3]]]&][[All,2]]] (* The program generates the first 31 terms of the sequence. *) (* Harvey P. Dale, Oct 04 2022 *)

Formula

a(n) = A000203(A004394(n)). - Amiram Eldar, Sep 25 2021

A087315 a(n) = Product_{k=1..n} prime(k)^prime(n-k+1).

Original entry on oeis.org

1, 4, 72, 21600, 190512000, 580909190400000, 428616352408083840000000, 859278392084450410309036800000000000, 2097197194438629126172451944256706311040000000000000
Offset: 0

Views

Author

Amarnath Murthy, Sep 03 2003

Keywords

Examples

			a(3) = 2^5*3^3*5^2 = 21600.
		

Crossrefs

Programs

  • Magma
    [1] cat [(&*[NthPrime(k)^(NthPrime(n-k+1)): k in [1..n]]): n in [1..10]]; // G. C. Greubel, Oct 14 2018
  • Maple
    seq(product(ithprime(k)^ithprime(n-k+1), k=1..n), n=0..10);
  • Mathematica
    Table[Product[Prime[k]^Prime[n - k + 1], {k, 1, n}], {n, 0, 10}] (* G. C. Greubel, Oct 14 2018 *)
  • PARI
    for(n=0, 10, print1(prod(k=1,n, prime(k)^prime(n-k+1)), ", ")) \\ G. C. Greubel, Oct 14 2018
    
  • Sage
    [prod(nth_prime(i)^nth_prime(k-i+1) for i in (1..k)) for k in (0..10)] # Giuseppe Coppoletta, Nov 03 2014
    

Extensions

More terms from Jorge Coveiro, Dec 22 2004
Corrected by David Wasserman, May 02 2005

A328134 Exponential highly abundant numbers: numbers m such that esigma(m) > esigma(k) for all k < m, where esigma(m) is the sum of exponential divisors of m (A051377).

Original entry on oeis.org

1, 2, 3, 4, 7, 8, 9, 12, 16, 18, 20, 28, 36, 52, 60, 68, 72, 84, 92, 100, 124, 132, 140, 144, 180, 244, 252, 300, 324, 360, 396, 468, 588, 612, 684, 828, 900, 1116, 1260, 1332, 1476, 1548, 1692, 1764, 2124, 2196, 2340, 2412, 2556, 2628, 2700, 2772, 2844, 2988
Offset: 1

Views

Author

Amiram Eldar, Oct 04 2019

Keywords

Comments

The exponential version of A002093.

Examples

			The first 10 values of esigma(k) for k = 1 to 10 are 1, 2, 3, 6, 5, 6, 7, 10, 12, 10. The record values are reached for 1, 2, 3, 4, 7, 8, 9.
		

Crossrefs

Cf. A002093, A051377, A285614 (unitary), A292983 (bi-unitary), A327634 (infinitary).

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e, p^# &]; esigma[1] = 1; esigma[n_] := Times @@ f @@@ FactorInteger[n]; s = {}; em = 0; Do[e = esigma[n]; If[e > em, em = e; AppendTo[s, n]], {n, 1, 3000}]; s

A095849 Numbers j where sigma_k(j) increases to a record for all real values of k.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 48, 60, 120, 240, 360, 840, 1680, 2520, 5040, 10080, 15120, 25200, 27720, 55440, 110880, 166320, 277200, 720720, 1441440, 2162160, 3603600, 7207200, 10810800, 36756720, 61261200, 122522400, 183783600, 698377680
Offset: 1

Views

Author

Matthew Vandermast, Jun 09 2004

Keywords

Comments

For any value of k, sigma_k(j) > sigma_k(m) for all m < j, where the function sigma_k(j) is the sum of the k-th powers of all divisors of j.
Conjecture: a number is in this sequence if and only if it is in both A002182 and A095848. - J. Lowell, Jun 21 2008

Crossrefs

Cf. A002093 (highly abundant numbers), A002182 (highly composite numbers) and A004394 (superabundant numbers), consisting of numbers that establish records for sigma_k(j) where k equals 1, 0 and -1 respectively. See also A095848.
Cf. also A166981 (numbers that establish records for both k=0 and k=-1).

Extensions

Extended by T. D. Noe, Apr 22 2010
Corrected by T. D. Noe and Matthew Vandermast, Oct 04 2010
Removed keyword "fini", since it appears that as yet there is no proof. - N. J. A. Sloane, Sep 17 2022

A119616 Second elementary symmetric function of divisors of n.

Original entry on oeis.org

0, 2, 3, 14, 5, 47, 7, 70, 39, 97, 11, 287, 13, 163, 158, 310, 17, 533, 19, 609, 262, 343, 23, 1375, 155, 457, 390, 1043, 29, 1942, 31, 1302, 542, 733, 502, 3185, 37, 895, 718, 2945, 41, 3358, 43, 2247, 1859, 1267, 47, 5983, 399, 2697, 1142, 3017, 53, 5150, 1006
Offset: 1

Views

Author

N. J. A. Sloane, based on email from Neven Juric (neven.juric(AT)apis-it.hr), Jun 07 2006

Keywords

Comments

a(p)=p if p is prime and records are A002093 (highly abundant numbers). - Robert G. Wilson v, Jun 07 2006

Examples

			|-------+------------------------------------------+---------------------|
|...n...|................divisors(n)...............|..s2(divisors.(n))...|
|-------+------------------------------------------+---------------------|
|...1...|....................1.....................|..........0..........|
|...2...|...................1,2....................|..........2..........|
|...3...|...................1,3....................|..........3..........|
|...4...|..................1,2,4...................|.........14..........|
|...5...|...................1,5....................|..........5..........|
|...6...|.................1,2,3,6..................|.........47..........|
		

Crossrefs

Column k=2 of A224381.

Programs

  • Maple
    a:= n-> (l-> add(add(l[i]*l[j], i=1..j-1), j=2..nops(l)))
            (sort([numtheory[divisors](n)[]])):
    seq(a(n), n=1..80);  # Alois P. Heinz, Jun 25 2014
  • Mathematica
    f[n_] := Block[{d = Divisors@n}, Sum[ d[[u]]*d[[v]], {v, 2, Length@d}, {u, v - 1}]]; Array[f, 55] (* Robert G. Wilson v *)
  • PARI
    a(n)=my(d=divisors(n));sum(i=1,#d-1,sum(j=i+1,#d,d[i]*d[j])) \\ Charles R Greathouse IV, Mar 05 2013
    
  • PARI
    a(n)=(sigma(n)^2-sigma(n,2))/2 \\ Charles R Greathouse IV, Mar 05 2013

Formula

a(n) = Sum_{u|n, v|n, u
a(n) = (sigma_1(n)^2-sigma_2(n))/2, cf. A000203, A001157. - Vladeta Jovovic, Jun 07 2006
Sum_{k=1..n} a(k) = zeta(3) * n^3 / 4 + O(n^2*log(n)^2). - Amiram Eldar, Dec 15 2023

A193988 Numbers n such that sigma_2(n) > sigma_2(k) for all k < n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 22, 24, 28, 30, 32, 34, 36, 40, 42, 44, 46, 48, 52, 54, 56, 60, 64, 66, 70, 72, 78, 80, 84, 90, 96, 100, 102, 108, 114, 120, 126, 132, 138, 140, 144, 150, 156, 162, 168, 180, 192, 198, 204, 210, 216, 228
Offset: 1

Author

T. D. Noe, Aug 17 2011

Keywords

Comments

Where record values of sigma_2(n) occur. Records transform of A001157.

Crossrefs

Cf. A001157, A002093 (highly abundant numbers), A193989.

Programs

  • Mathematica
    mx = 0; t = {}; Do[u = DivisorSigma[2, n]; If[u > mx, mx = u; AppendTo[t, n]], {n, 1000}]; t
    DeleteDuplicates[Table[{n,DivisorSigma[2,n]},{n,1000}],GreaterEqual[#1[[2]],#2[[2]]]&][[All,1]] (* Harvey P. Dale, May 14 2022 *)

A280013 Numbers k such that sum of squarefree divisors of k > sum of squarefree divisors of m for all m < k.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 14, 21, 22, 26, 30, 42, 66, 78, 102, 114, 130, 138, 170, 174, 186, 210, 318, 330, 390, 462, 510, 546, 570, 690, 798, 858, 870, 930, 1110, 1218, 1230, 1290, 1410, 1554, 1590, 1722, 1770, 1830, 1974, 2010, 2130, 2190, 2310, 2730, 3390, 3570, 3990, 4290, 4830, 5610
Offset: 1

Author

Ilya Gutkovskiy, Apr 14 2017

Keywords

Comments

Numbers k such that psi(rad(k)) > psi(rad(m)) for all m < k, where psi() is the Dedekind psi function (A001615) and rad() is the squarefree kernel (A007947).
Numbers k such that Sum_{d|k} mu(d)^2*d > Sum_{d|m} mu(d)^2*d for all m < k, where mu() is the Moebius function (A008683).
All terms are squarefree. - Robert Israel, Apr 19 2017

Programs

  • Maple
    ssd:= n -> convert(select(numtheory:-issqrfree,numtheory:-divisors(n)),`+`):
    M:= 0: A:= NULL:
    for n from 1 to 10^5 do
        r:= ssd(n);
        if r > M then M:= r; A:= A, n fi
    od:
    A; # Robert Israel, Apr 19 2017
  • Mathematica
    mx = 0; t = {}; Do[u = DivisorSum[n, # &, SquareFreeQ[#] &]; If[u > mx, mx = u; AppendTo[t, n]], {n, 6000}]; t
  • Python
    from sympy.ntheory.factor_ import core
    from sympy import divisors
    def s(n): return sum(list(filter(lambda i: core(i) == i, divisors(n))))
    def ok(n):
        m=1
        while ms(m): return False
            m+=1
        return True # Indranil Ghosh, Apr 16 2017
Previous Showing 21-30 of 79 results. Next