cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 79 results. Next

A329883 Nonunitary highly abundant numbers: numbers m such that nusigma(m) > nusigma(k) for all k < m, where s(n) is the sum of nonunitary divisors of n (A048146).

Original entry on oeis.org

1, 4, 8, 12, 16, 24, 32, 36, 48, 64, 72, 96, 108, 120, 144, 180, 192, 216, 288, 360, 432, 504, 576, 648, 720, 864, 1008, 1080, 1296, 1440, 1728, 1800, 2016, 2160, 2520, 2880, 3024, 3240, 3456, 3528, 3600, 4320, 5040, 5400, 5760, 6048, 6480, 7056, 7200, 8640
Offset: 1

Views

Author

Amiram Eldar, Nov 23 2019

Keywords

Comments

The corresponding record values are 0, 2, 6, 8, 14, 24, 30, 41, 56, 62, 105, 120, 140, 144, 233, 246, 248, 348, 489, 630, 764, 840, ...

Crossrefs

The nonunitary version of A002093.

Programs

  • Mathematica
    usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); nusigma[n_] := DivisorSigma[1, n] - usigma[n]; num = -1; s = {}; Do[nu = nusigma[n]; If[nu > num, num = nu; AppendTo[s, n]], {n, 1, 10^4}]; s

A174572 Highly abundant odd numbers: odd n such that sigma(n) is a record.

Original entry on oeis.org

1, 3, 5, 7, 9, 13, 15, 21, 27, 33, 39, 45, 57, 63, 75, 93, 99, 105, 135, 165, 189, 195, 225, 255, 273, 285, 315, 399, 405, 441, 465, 495, 525, 585, 675, 693, 735, 765, 819, 825, 855, 945, 1125, 1155, 1305, 1365, 1485, 1575, 1755, 1785, 1995, 2145, 2205
Offset: 1

Views

Author

T. D. Noe, Mar 24 2010

Keywords

Crossrefs

Cf. A002093 (highly abundant numbers).

Programs

  • Mathematica
    mx=0; t={}; Do[ds=DivisorSigma[1,n]; If[ds>mx, mx=ds; AppendTo[t,n]], {n,1,10^4,2}]; t

A181561 Primes of the form highly abundant number + 1.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 31, 37, 43, 61, 73, 97, 109, 181, 211, 241, 337, 421, 541, 601, 631, 661, 1009, 1201, 1621, 1801, 2161, 2341, 2521, 3121, 3361, 4201, 4621, 5881, 6121, 6301, 7561, 8821, 9241, 12241, 12601, 13441, 15121, 16381, 18481, 19801, 20161, 21841, 23761, 30241, 35281
Offset: 1

Views

Author

Jonathan Vos Post, Jan 29 2011

Keywords

Examples

			The 52nd highly abundant number is 1800, add one to get 1801 which is prime.
		

Crossrefs

Programs

  • Mathematica
    seq = {}; smax = 0; Do[s = DivisorSigma[1, n]; If[s > smax, smax = s; If[PrimeQ[n + 1], AppendTo[seq, n + 1]]], {n, 1, 10^4}]; seq (* Amiram Eldar, Jun 07 2019 *)

Formula

{A002093(i) + 1} INTERSECTION A000040.
{1 + (sigma(n) > sigma(m) for all m < n + 1)} INTERSECTION A000040.

A337691 a(n) is the least positive integer divisible by exactly n primitive nondeficient numbers (A006039).

Original entry on oeis.org

1, 6, 60, 140, 420, 3780, 17160, 28600, 40040, 138600, 120120, 180180, 300300, 360360, 600600, 1351350, 900900, 4144140, 1801800, 3063060, 5405400, 6126120, 8558550, 7657650, 19399380, 20720700, 17117100, 15315300, 29099070, 30630600, 45945900, 70450380, 91891800, 87297210
Offset: 0

Views

Author

Keywords

Comments

a(10) starts a run of at least 31 terms divisible by 30030 = 13#, product of primes <= 13.
About 20% of known terms are not divisible by 4 (indices 0, 1, 15, 22, 23, 28, 33, 38, 40, ...). This contrasts with many sequences that require terms to have some higher measure of abundancy (cf. A002093, A004394, A004490), where almost all terms are divisible by 4. The possibility of nontrivial odd terms seems worth considering.

Examples

			The least nondeficient number, therefore the least primitive nondeficient number is 6. So a(1) = 6, as the smallest number divisible by exactly 1 primitive nondeficient number.
Table of n, a(n) and the relevant divisors starts:
  n    a(n)   divisors in A006039
  0       1   (none);
  1       6   6;
  2      60   6, 20;
  3     140   20, 28, 70;
  4     420   6, 20, 28, 70;
  5    3780   6, 20, 28, 70, 945;
  6   17160   6, 20, 88, 104, 572, 1430;
  7   28600   20, 88, 104, 550, 572, 650, 1430;
  8   40040   20, 28, 70, 88, 104, 572, 1430, 2002; ...
Note that a(6), a(7), a(8) are 3*5720, 5*5720, 7*5720.
		

Crossrefs

A006039, A337690 are used to define this sequence.
See A000203 and A023196 for definitions of deficient and nondeficient.
Sequences with similar definitions: A091193, A335540, A338405.

Programs

  • PARI
    \\ Code for A337690 given under that entry.
    A337691list(search_up_to_n) = { my(m=Map(),lista=List([]),t); for(n=1,search_up_to_n,if(!(n%(2^24)),print1("(",n,")")); t=A337690(n); if(!mapisdefined(m,t), mapput(m,t,n))); for(n=0,oo,if(mapisdefined(m,n,&t), listput(lista,t), return(Vec(lista)))); };
    v337691 = A337691list(2^27);
    A337691(n) = v337691[1+n];

Formula

a(n) = min({k integer : k >= 1 and A337690(k) = n}).

A348272 Noninfinitary highly abundant numbers: numbers m such that nisigma(m) > nisigma(k) for all k < m, where nisigma(k) is the sum of noninfinitary divisors of n (A348271).

Original entry on oeis.org

1, 4, 9, 12, 16, 28, 36, 48, 80, 100, 112, 144, 180, 240, 300, 324, 336, 396, 400, 432, 468, 528, 576, 684, 720, 900, 1008, 1200, 1296, 1584, 1872, 2160, 2268, 2304, 2448, 2736, 2880, 3312, 3600, 5040, 6300, 6480, 7056, 7920, 9072, 9360, 10800, 11088, 11520, 12240
Offset: 1

Views

Author

Amiram Eldar, Oct 09 2021

Keywords

Comments

The corresponding record values are 0, 2, 3, 8, 14, 16, 41, 56, 84, 87, 112, ...

Examples

			The first 9 values of A348271(k) for k = 1 to 9 are: 0, 0, 0, 2, 0, 0, 0, 0 and 3. The record values, 0, 2 and 3, occur at 1, 4 and 9, the first 3 terms of this sequence.
		

Crossrefs

Cf. A348271.
The noninfinitary version of A002093.
Similar sequences: A285614, A292983, A327634, A328134, A329883.

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ f @@@ FactorInteger[n]; s[n_] := DivisorSigma[1,n] - isigma[n]; seq={}; sm = -1; Do[s1 = s[n];If[s1 > sm, sm= s1; AppendTo[seq, n]], {n, 1, 10^4}]; seq

A363658 Positive numbers m where A217854(m) is positive and increases to a record.

Original entry on oeis.org

2, 3, 5, 6, 8, 10, 12, 18, 20, 24, 30, 40, 42, 48, 60, 72, 84, 90, 96, 108, 120, 168, 180, 240, 336, 360, 420, 480, 504, 540, 600, 630, 660, 672, 720, 840, 1080, 1260, 1440, 1680, 2160, 2520, 3360, 3780, 3960, 4200, 4320, 4620, 4680, 5040, 7560, 9240, 10080
Offset: 1

Views

Author

Simon Jensen, Jun 13 2023

Keywords

Comments

(-m)^tau(m) > 0 and (-m)^tau(m) > (-k)^tau(k) for all positive k < m, where tau is the number of divisors function.
There are no squares in this sequence.
It appears that if n > 13, then a(n) = A067128(n). See the link.
Only a finite number of terms in A002093 can also be terms in this sequence. See the link.

Examples

			5 is a term since (-5)^tau(5) = (-5)^2 = 25 and 25 > (-k)^tau(k) for k = 1,...,4.
		

Crossrefs

Programs

  • PARI
    isok(m) = my(x=(-m)^numdiv(m)); if (x>0, for (k=1, m-1, if (x <= (-k)^numdiv(k), return(0))); return(1)); \\ Michel Marcus, Aug 31 2023

A065386 Successive record values of the cototient function (A051953).

Original entry on oeis.org

0, 1, 2, 4, 6, 8, 12, 16, 22, 24, 30, 32, 36, 44, 46, 48, 54, 60, 66, 70, 72, 78, 88, 90, 92, 94, 96, 110, 120, 132, 138, 140, 162, 176, 180, 184, 198, 210, 220, 250, 264, 270, 294, 324, 330, 342, 352, 360, 382, 396, 402, 426, 440, 486, 500, 514, 522, 528, 550, 588
Offset: 1

Views

Author

Labos Elemer, Nov 05 2001

Keywords

Examples

			a(8)=22 because for m = 1...29 the cototient values are all smaller than cototient(30)=22, where 30=A065385(8) and 22 is the 8th term in the sequence of such local records.
		

Crossrefs

Cototient(A065385(n)).
A006093 gives similar records for the totient function. A002093, A002182, A015702, A005250 are analogous sequences for other functions.
a(n) = A051953(A065385(n)).

Programs

  • Mathematica
    a=0; s=0; Do[s = n-EulerPhi[n]; If[s>a, a=s; Print[s]], {n, 1, 10000}]
    (* Second program: *)
    With[{s = Array[# - EulerPhi@ # &, 10^3]}, Union@ FoldList[Max, s]] (* Michael De Vlieger, Nov 03 2017 *)
  • PARI
    r=-1; for(n=1,1000,d=n-eulerphi(n); if(r
    				
  • PARI
    { n=0; x=-1; for (m=1, 10^9, c=m - eulerphi(m); if (c > x, x=c; write("b065386.txt", n++, " ", c); if (n==1000, return)) ) } \\ Harry J. Smith, Oct 17 2009

A070172 Smallest k such that sigma(k) >= n.

Original entry on oeis.org

1, 2, 2, 3, 4, 4, 4, 6, 6, 6, 6, 6, 8, 8, 8, 10, 10, 10, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 16, 16, 16, 18, 18, 18, 18, 18, 18, 18, 18, 20, 20, 20, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 36, 36
Offset: 1

Views

Author

Benoit Cloitre, May 06 2002

Keywords

Comments

Also smallest m to partition n into distinct divisors of m; highly abundant numbers are record values: a(i) < A002093(n) for 1<=i < A085443(n), A002093(n) = a(A085443(n)). - Reinhard Zumkeller, Jun 30 2003
1 followed by A002093(k) appearing A034885(k+1)-A034885(k) times, for k >= 2. - Amiram Eldar, Apr 04 2025

Crossrefs

Programs

  • Mathematica
    nn=80;With[{s=Table[{n,DivisorSigma[1,n]},{n,nn}]},Transpose[ Flatten[ Table[ Select[s,#[[2]]>=i&,1],{i,nn}],1]][[1]]] (* Harvey P. Dale, Dec 28 2013 *)
    seq[lim_] := Module[{han = Cases[Import["https://oeis.org/A002093/b002093.txt", "Table"], {, }][[;; , 2]], hmax, sigma, d}, hmax = han[[-1]]; If[lim > hmax, Print["Error: lim is too large"]; {}, han = Select[han, # <= lim &]; sigma = DivisorSigma[1, han]; d = Join[{1}, Differences[sigma]]; Flatten[Table[han[[i]], {i, 1, Length[han]}, {d[[i]]}]]]]; seq[100] (* Amiram Eldar, Apr 04 2025 *)
  • PARI
    for(n=1,150,s=1; while(sigma(s)
    				

Formula

It seems that lim_{n -> oo} a(n)*log(log(n))/n = C = 0.6...

A085443 Where records in A070172 occur.

Original entry on oeis.org

1, 2, 4, 5, 8, 13, 16, 19, 29, 32, 40, 43, 61, 73, 92, 97, 125, 169, 196, 225, 235, 253, 281, 361, 404, 481, 547, 577, 601, 745, 820, 869, 993, 1171, 1345, 1513, 1561, 1681, 1861, 1873, 2017, 2419, 2881, 3049, 3225, 3601, 3845, 4369, 4915, 5041, 5083, 5953, 6046
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 30 2003

Keywords

Crossrefs

Formula

A070172(i) < A002093(n) for 1 <= i < a(n).
A002093(n) = A070172(a(n)).
a(n) = A034885(n-1) + 1 for n >= 2. - Amiram Eldar, Apr 04 2025

Extensions

More terms from Amiram Eldar, Apr 04 2025

A128700 Highly abundant numbers with an odd divisor sum.

Original entry on oeis.org

1, 2, 4, 8, 16, 18, 36, 72, 144, 288, 1800, 3600, 7200
Offset: 1

Views

Author

Ant King, Mar 28 2007

Keywords

Comments

Alaoglu and Erdős showed that 7200 is the largest highly abundant number with all the exponents of its prime factors occurring to powers greater than unity. It follows that the sequence of highly abundant numbers with an odd divisor sum is finite and is bounded above by 7200. Accordingly, this is the complete sequence of such integers.

Examples

			The fifth highly abundant number with an odd divisor sum is 16. Hence a(5)=16. [Corrected by _N. J. A. Sloane_, Jan 11 2024 at the suggestion of _Harvey P.Dale_.]
		

Crossrefs

Programs

  • Mathematica
    hadata1=FoldList[Max,1,Table[DivisorSigma[1,n],{n,2,7200}]]; data1=Flatten[Position[hadata1,#,1,1]&/@Union[hadata1]];Select[data1,OddQ[DivisorSigma[1,# ]] &]

Formula

The highly abundant numbers are those integers for which sigma(n) > sigma(m) for all m < n (A002093). This sequence contains those elements of A002093 that have an odd divisor sum.
Previous Showing 31-40 of 79 results. Next