A353548
Expansion of e.g.f. -log(1-4*x) * exp(x)/4.
Original entry on oeis.org
0, 1, 6, 47, 540, 8429, 166210, 3952955, 109981816, 3502905369, 125648153278, 5011458069639, 219987094389524, 10538817637744005, 547118005892177018, 30595552548140425747, 1833501625083035349488, 117219490267316310468913
Offset: 0
Essentially partial sums of
A056545.
-
my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-log(1-4*x)*exp(x)/4)))
-
a(n) = n!*sum(k=0, n-1, 4^(n-1-k)/((n-k)*k!));
-
a_vector(n) = my(v=vector(n+1, i, if(i==2, 1, 0))); for(i=2, n, v[i+1]=(4*i-3)*v[i]-4*(i-1)*v[i-1]+1); v;
A353549
Expansion of e.g.f. log(1+3*x) * exp(x)/3.
Original entry on oeis.org
0, 1, -1, 12, -104, 1289, -19605, 356488, -7541464, 182009385, -4935863537, 148600324124, -4918093868688, 177482897072545, -6936155749635541, 291836667412104072, -13152940374866178512, 632196357654491385521, -32280617841842744380161
Offset: 0
-
my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(log(1+3*x)*exp(x)/3)))
-
a(n) = n!*sum(k=0, n-1, (-3)^(n-1-k)/((n-k)*k!));
-
a_vector(n) = my(v=vector(n+1, i, if(i==2, 1, 0))); for(i=2, n, v[i+1]=(-3*i+4)*v[i]+3*(i-1)*v[i-1]+1); v;
A121726
Sum sequence A000522 then subtract 0,1,2,3,4,5,...
Original entry on oeis.org
1, 2, 6, 21, 85, 410, 2366, 16065, 125665, 1112074, 10976174, 119481285, 1421542629, 18348340114, 255323504918, 3809950976993, 60683990530209, 1027542662934898, 18430998766219318, 349096664728623317, 6962409983976703317, 145841989688186383338, 3201192743180799343822
Offset: 1
A000522 begins 1 2 5 16 65 326 ...
with sums 1 3 8 24 89 415 ...
so sequence begins 1 2 6 21 85 410 ...
.
From _Peter Luschny_, Nov 19 2020: (Start):
The combinatorial interpretation is illustrated by this computation of a(5):
5! / aut([5]) = 120 / A339033(5, 1) = 120/5 = 24
5! / aut([4, 1]) = 120 / A339033(5, 2) = 120/4 = 30
5! / aut([3, 1, 1]) = 120 / A339033(5, 3) = 120/6 = 20
5! / aut([2, 1, 1, 1]) = 120 / A339033(5, 4) = 120/12 = 10
5! / aut([1, 1, 1, 1, 1]) = 120 / A339033(5, 5) = 120/120 = 1
--------------------------------------------------------------
Sum: a(5) = 85
(End)
-
f[list_] :=Total[list]!/Apply[Times, list]/Apply[Times, Map[Length, Split[list]]!]; Table[Total[Map[f, Select[Partitions[n], Count[#, Except[1]] == 1 &]]] + 1, {n, 1, 20}] (* Geoffrey Critzer, Nov 07 2015 *)
-
A000522(n)={ return( sum(k=0,n,n!/k!)) ; } A121726(n)={ return(sum(k=0,n-1,A000522(k))-n+1) ; } { for(n=1,25, print1(A121726(n),",") ; ) ; } \\ R. J. Mathar, Sep 02 2006
-
def A121726(n):
def h(n, k):
if n == k: return 1
return factorial(n)//((n + 1 - k)*factorial(k - 1))
return sum(h(n, k) for k in (1..n))
print([A121726(n) for n in (1..23)])
# Demonstrates the combinatorial view:
def A121726(n):
if n == 0: return 1
f = factorial(n); S = 0
for k in (0..n):
for p in Partitions(n, max_part=k, inner=[k], length=n+1-k):
S += (f // p.aut())
return S
print([A121726(n) for n in (1..23)]) # Peter Luschny, Nov 20 2020
A305407
Expansion of e.g.f. 1/(1 + log(1 - x)*exp(x)).
Original entry on oeis.org
1, 1, 5, 32, 274, 2939, 37833, 568210, 9753280, 188342949, 4041170695, 95380234366, 2455830637412, 68501591450447, 2057726452045145, 66227424015265178, 2273614433910697920, 82932491842062712873, 3202994529476330549163, 130577628147690206429038, 5603479009890212632226756
Offset: 0
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 32*x^3/3! + 274*x^4/4! + 2939*x^5/5! + 37833*x^6/6! + ...
-
a:=series(1/(1+log(1-x)*exp(x)),x=0,21): seq(n!*coeff(a,x,n),n=0..20); # Paolo P. Lava, Mar 26 2019
-
nmax = 20; CoefficientList[Series[1/(1 + Log[1 - x] Exp[x]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[HypergeometricPFQ[{1, 1, 1 - k}, {2}, -1] a[n - k]/(k - 1)!, {k, 1, n}]; Table[n! a[n], {n, 0, 20}]
A339016
A classification of permutations based on their cycle length and the size of the centralizer of their cycle type. Triangle read by rows, T(n, k) for 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 0, 2, 0, 0, 0, 6, 0, 0, 0, 3, 21, 0, 0, 0, 0, 35, 85, 0, 0, 0, 0, 55, 255, 410, 0, 0, 0, 0, 0, 1015, 1659, 2366, 0, 0, 0, 0, 0, 2485, 10528, 11242, 16065, 0, 0, 0, 0, 0, 2240, 58149, 92064, 84762, 125665, 0, 0, 0, 0, 0, 0, 228221, 760725, 805530, 722250, 1112074
Offset: 0
Triangle starts:
0: [1]
1: [0, 1]
2: [0, 0, 2]
3: [0, 0, 0, 6]
4: [0, 0, 0, 3, 21]
5: [0, 0, 0, 0, 35, 85]
6: [0, 0, 0, 0, 55, 255, 410]
7: [0, 0, 0, 0, 0, 1015, 1659, 2366]
8: [0, 0, 0, 0, 0, 2485, 10528, 11242, 16065]
9: [0, 0, 0, 0, 0, 2240, 58149, 92064, 84762, 125665]
----------------------------------------------------------
Sum 1, 1, 2, 9, 111, 6080, 2331767, ...
.
Examples for the basic two-dimensional classification of permutations (dots indicate zeros):
.
* Case n = 6:
| 1 2 3 4 5 6 | Sum
-------------------------------------|----
1 | . . . . . [1] | 1
2 | . . [ 15] [45] [15] | 75
3 | . [ 40] [120] [40] | 200
4 | . [ 90] [ 90] | 180
5 | . [144] | 144
6 | [120] | 120
-------------------------------------|----
Sum| 120, 274, 225, 85, 15, 1 | 720
.
Antidiagonals: [40 + 15, 90 + 120 + 45, 120 + 144 + 90 + 40 + 15 + 1]
Leads to row 6 (disregarding leading zeros): 55 + 255 + 410 = 720.
.
* Case n = 7:
| 1 2 3 4 5 6 7 | Sum
--------------------------------------------|-----
1 | . . . . . . [1] | 1
2 | . . . [105] [105] [21] | 231
3 | . . [490] [420] [ 70] | 980
4 | . [420] [630] [210] | 1260
5 | . [504] [504] | 1008
6 | . [840] | 840
7 | [720] | 720
--------------------------------------------|-----
Sum| 720, 1764, 1624, 735, 175, 21, 1 | 5040
.
Antidiagonals: [420+490+105, 504+630+420+105, 720+840+504+210+70+21+1]
Leads to row 7 (disregarding leading zeros): 1015 + 1659 + 2366 = 5040
.
* Column sums of the matrix give the unsigned Stirling cycle numbers, A132393.
* Row sums of the matrix give the number of permutations of n elements whose longest cycle have length k, A126074.
* The main antidiagonal of the matrix gives the number of n-permutations that are pure cycles of length n - k, A092271.
* The entries of the matrix sum to n!. In particular the sum over all row sums, the sum over all column sums, and the sum over all antidiagonal sums is n!.
* The columns of the triangle are finite in the sense that their entries become ultimately zero. Column sums of the triangle are A339015.
-
# For illustration computes also A132393 and A126074 (remove the #).
def A339016Row(n):
f = factorial(n); M = matrix(n + 2)
for k in (0..n):
for p in Partitions(n, max_part=k, inner=[k]):
M[k, len(p)] += (f // p.aut())
# print("max cyc len", [sum(M[k, j] for j in (0..n+1)) for k in (0..n)])
# print("Stirling 1 ", [sum(M[j, k] for j in (0..n+1)) for k in (0..n)])
if n == 0: return [1]
return [sum(M[j, k-j+1] for j in srange(k, 0, -1)) for k in (0..n)]
for n in (0..9): print(A339016Row(n))
A291484
Expansion of e.g.f. arctanh(x)*exp(x).
Original entry on oeis.org
0, 1, 2, 5, 12, 49, 190, 1301, 7224, 69441, 495898, 6095429, 53005700, 792143793, 8110146070, 142633278997, 1679413757168, 33964965659649, 451969255722162, 10331348137881349, 153288815339260796, 3907452790559751857, 63949589015139119598, 1798373345567005989781, 32179694275204166066728
Offset: 0
E.g.f.: A(x) = x/1! + 2*x^2/2! + 5*x^3/3! + 12*x^4/4! + 49*x^5/5! + ...
-
a:=series(arctanh(x)*exp(x),x=0,25): seq(n!*coeff(a,x,n),n=0..24); # Paolo P. Lava, Mar 27 2019
-
nmax = 24; Range[0, nmax]! CoefficientList[Series[ArcTanh[x] Exp[x], {x, 0, nmax}], x]
nmax = 24; Range[0, nmax]! CoefficientList[Series[Log[(1 + x)/(1 - x)] Exp[x]/2, {x, 0, nmax}], x]
nmax = 24; Range[0, nmax]! CoefficientList[Series[Sum[x^(2 k + 1)/(2 k + 1), {k, 0, Infinity}] Exp[x], {x, 0, nmax}], x]
Table[Sum[Binomial[n+1,2k+1](n-2k)/(n+1) (2 k)!, {k,0,n/2}],{n,0,12}] (* Emanuele Munarini, Dec 16 2017 *)
-
makelist(sum(binomial(n+1,2*k+1)*(n-2*k)/(n+1)*(2*k)!,k,0,floor(n/2)),n,0,12); /* Emanuele Munarini, Dec 16 2017 */
-
first(n) = x='x+O('x^n); Vec(serlaplace(atanh(x)*exp(x)), -n) \\ Iain Fox, Dec 16 2017
A336291
a(n) = (n!)^2 * Sum_{k=1..n} 1 / (k * ((n-k)!)^2).
Original entry on oeis.org
0, 1, 6, 39, 424, 7905, 227766, 9324511, 512970144, 36452217969, 3247711402870, 354391640998791, 46474986465907176, 7210874466760191409, 1306387103147257800774, 273269900360634449732895, 65363179181419926246184576, 17726298367452515070739268001
Offset: 0
-
Table[(n!)^2 Sum[1/(k ((n - k)!)^2), {k, 1, n}], {n, 0, 17}]
nmax = 17; CoefficientList[Series[-Log[1 - x] BesselI[0, 2 Sqrt[x]], {x, 0, nmax}], x] Range[0, nmax]!^2
-
a(n) = (n!)^2 * sum(k=1, n, 1 / (k * ((n-k)!)^2)); \\ Michel Marcus, Jul 17 2020
A356925
E.g.f. satisfies A(x) = 1/(1 - x)^(exp(x) * A(x)).
Original entry on oeis.org
1, 1, 6, 51, 614, 9655, 188209, 4389532, 119363488, 3711190881, 129932611723, 5060364817200, 217054300138136, 10168837756846145, 516709033266165479, 28306732060349788908, 1663231006737554997168, 104344911495734048046929
Offset: 0
-
nmax = 20; CoefficientList[Series[LambertW[E^x * Log[1-x]]/(E^x * Log[1-x]), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 14 2022 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k+1)^(k-1)*(-exp(x)*log(1-x))^k/k!)))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(exp(x)*log(1-x)))))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(lambertw(exp(x)*log(1-x))/(exp(x)*log(1-x))))
A114633
a(n) = (n+1)*(n+2)/2 * Sum_{k=0..floor(n/2)} n!/(n-2*k)!.
Original entry on oeis.org
1, 3, 18, 70, 555, 2961, 31108, 213228, 2799765, 23455135, 369569046, 3659001138, 67261566463, 768390239085, 16142775951240, 209002145031256, 4939689441079593, 71478733600689723, 1877081987610245530, 30021068112289683870, 867211878275933435091, 15190660464818580038473
Offset: 0
-
a:= n-> (n+1)*(n+2)/2*sum(n!/(n-2*k)!,k=0..floor(n/2)): seq(a(n), n=0..20);
-
Rest[Rest[With[{nn=25}, CoefficientList[Series[Exp[x]/(1 - x^2)(x^2/2), {x, 0, nn}], x] Range[0, nn]!]]] (* Vincenzo Librandi, Sep 03 2017 *)
A302581
a(n) = n! * [x^n] -exp(-n*x)*log(1 - x).
Original entry on oeis.org
0, 1, -3, 20, -186, 2249, -33360, 586172, -11901008, 274098393, -7060189120, 201092672604, -6275340884736, 212915635727313, -7803567334571008, 307245946117223700, -12933084380738398208, 579587518114690731601, -27550568677612746940416, 1384553892443352890245636
Offset: 0
-
Table[n! SeriesCoefficient[-Exp[-n x] Log[1 - x], {x, 0, n}], {n, 0, 19}]
Table[Sum[(-n)^(n - k) (k - 1)! Binomial[n, k], {k, 1, n}], {n, 0, 19}]
nmax = 20; CoefficientList[Series[-Log[1 - LambertW[x]]/(1 + LambertW[x]), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 09 2019 *)
Comments