cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 39 results. Next

A353548 Expansion of e.g.f. -log(1-4*x) * exp(x)/4.

Original entry on oeis.org

0, 1, 6, 47, 540, 8429, 166210, 3952955, 109981816, 3502905369, 125648153278, 5011458069639, 219987094389524, 10538817637744005, 547118005892177018, 30595552548140425747, 1833501625083035349488, 117219490267316310468913
Offset: 0

Views

Author

Seiichi Manyama, May 27 2022

Keywords

Crossrefs

Cf. A346396.
Essentially partial sums of A056545.

Programs

  • PARI
    my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-log(1-4*x)*exp(x)/4)))
    
  • PARI
    a(n) = n!*sum(k=0, n-1, 4^(n-1-k)/((n-k)*k!));
    
  • PARI
    a_vector(n) = my(v=vector(n+1, i, if(i==2, 1, 0))); for(i=2, n, v[i+1]=(4*i-3)*v[i]-4*(i-1)*v[i-1]+1); v;

Formula

a(n) = n! * Sum_{k=0..n-1} 4^(n-1-k) / ((n-k) * k!).
a(0) = 0, a(1) = 1, a(n) = (4 * n - 3) * a(n-1) - 4 * (n-1) * a(n-2) + 1.
a(n) ~ (n-1)! * exp(1/4) * 4^(n-1). - Vaclav Kotesovec, Jun 08 2022

A353549 Expansion of e.g.f. log(1+3*x) * exp(x)/3.

Original entry on oeis.org

0, 1, -1, 12, -104, 1289, -19605, 356488, -7541464, 182009385, -4935863537, 148600324124, -4918093868688, 177482897072545, -6936155749635541, 291836667412104072, -13152940374866178512, 632196357654491385521, -32280617841842744380161
Offset: 0

Views

Author

Seiichi Manyama, May 27 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(log(1+3*x)*exp(x)/3)))
    
  • PARI
    a(n) = n!*sum(k=0, n-1, (-3)^(n-1-k)/((n-k)*k!));
    
  • PARI
    a_vector(n) = my(v=vector(n+1, i, if(i==2, 1, 0))); for(i=2, n, v[i+1]=(-3*i+4)*v[i]+3*(i-1)*v[i-1]+1); v;

Formula

a(n) = n! * Sum_{k=0..n-1} (-3)^(n-1-k) / ((n-k) * k!).
a(0) = 0, a(1) = 1, a(n) = (-3 * n + 4) * a(n-1) + 3 * (n-1) * a(n-2) + 1.
a(n) ~ -(-1)^n * (n-1)! * 3^(n-1) / exp(1/3). - Vaclav Kotesovec, Jun 08 2022

A121726 Sum sequence A000522 then subtract 0,1,2,3,4,5,...

Original entry on oeis.org

1, 2, 6, 21, 85, 410, 2366, 16065, 125665, 1112074, 10976174, 119481285, 1421542629, 18348340114, 255323504918, 3809950976993, 60683990530209, 1027542662934898, 18430998766219318, 349096664728623317, 6962409983976703317, 145841989688186383338, 3201192743180799343822
Offset: 1

Views

Author

Alford Arnold, Aug 17 2006

Keywords

Comments

Let aut(p) denote the size of the centralizer of the partition p (see A339016 for the definition). Then a(n) = Sum_{p in P} n!/aut(p), where P are the partitions of n with largest part k and length n + 1 - k. - Peter Luschny, Nov 19 2020

Examples

			A000522 begins     1 2 5 16 65 326 ...
with sums          1 3 8 24 89 415 ...
so sequence begins 1 2 6 21 85 410 ...
.
From _Peter Luschny_, Nov 19 2020: (Start):
The combinatorial interpretation is illustrated by this computation of a(5):
5! / aut([5])             = 120 / A339033(5, 1) = 120/5   = 24
5! / aut([4, 1])          = 120 / A339033(5, 2) = 120/4   = 30
5! / aut([3, 1, 1])       = 120 / A339033(5, 3) = 120/6   = 20
5! / aut([2, 1, 1, 1])    = 120 / A339033(5, 4) = 120/12  = 10
5! / aut([1, 1, 1, 1, 1]) = 120 / A339033(5, 5) = 120/120 =  1
--------------------------------------------------------------
                                                Sum: a(5) = 85
(End)
		

Crossrefs

Also the row sums of A092271.

Programs

  • Mathematica
    f[list_] :=Total[list]!/Apply[Times, list]/Apply[Times, Map[Length, Split[list]]!]; Table[Total[Map[f, Select[Partitions[n], Count[#, Except[1]] == 1 &]]] + 1, {n, 1, 20}] (* Geoffrey Critzer, Nov 07 2015 *)
  • PARI
    A000522(n)={ return( sum(k=0,n,n!/k!)) ; } A121726(n)={ return(sum(k=0,n-1,A000522(k))-n+1) ; } { for(n=1,25, print1(A121726(n),",") ; ) ; } \\ R. J. Mathar, Sep 02 2006
    
  • SageMath
    def A121726(n):
        def h(n, k):
            if n == k: return 1
            return factorial(n)//((n + 1 - k)*factorial(k - 1))
        return sum(h(n, k) for k in (1..n))
    print([A121726(n) for n in (1..23)])
    # Demonstrates the combinatorial view:
    def A121726(n):
        if n == 0: return 1
        f = factorial(n); S = 0
        for k in (0..n):
            for p in Partitions(n, max_part=k, inner=[k], length=n+1-k):
                S += (f // p.aut())
        return S
    print([A121726(n) for n in (1..23)]) # Peter Luschny, Nov 20 2020

Formula

a(n) = A006231(n) + 1 = A002104(n) - (n-1). - Franklin T. Adams-Watters, Aug 29 2006
E.g.f.: exp(x)*(log(1/(1-x)) - x + 1). - Geoffrey Critzer, Nov 07 2015

Extensions

More terms from Franklin T. Adams-Watters, Aug 29 2006
More terms from R. J. Mathar, Sep 02 2006

A305407 Expansion of e.g.f. 1/(1 + log(1 - x)*exp(x)).

Original entry on oeis.org

1, 1, 5, 32, 274, 2939, 37833, 568210, 9753280, 188342949, 4041170695, 95380234366, 2455830637412, 68501591450447, 2057726452045145, 66227424015265178, 2273614433910697920, 82932491842062712873, 3202994529476330549163, 130577628147690206429038, 5603479009890212632226756
Offset: 0

Views

Author

Ilya Gutkovskiy, May 31 2018

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 5*x^2/2! + 32*x^3/3! + 274*x^4/4! + 2939*x^5/5! + 37833*x^6/6! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(1/(1+log(1-x)*exp(x)),x=0,21): seq(n!*coeff(a,x,n),n=0..20); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 20; CoefficientList[Series[1/(1 + Log[1 - x] Exp[x]), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[HypergeometricPFQ[{1, 1, 1 - k}, {2}, -1] a[n - k]/(k - 1)!, {k, 1, n}]; Table[n! a[n], {n, 0, 20}]

Formula

a(n) ~ n! / ((1 + exp(r)/r) * (1 - exp(-r))^(n+1)), where r = 0.62747017959751658496114808922921433658821962606026068561095... is the root of the equation r*exp(1 - exp(-r)) = 1. - Vaclav Kotesovec, Mar 26 2019
a(0) = 1; a(n) = Sum_{k=1..n} A002104(k) * binomial(n,k) * a(n-k). - Seiichi Manyama, May 04 2022

A339016 A classification of permutations based on their cycle length and the size of the centralizer of their cycle type. Triangle read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 0, 6, 0, 0, 0, 3, 21, 0, 0, 0, 0, 35, 85, 0, 0, 0, 0, 55, 255, 410, 0, 0, 0, 0, 0, 1015, 1659, 2366, 0, 0, 0, 0, 0, 2485, 10528, 11242, 16065, 0, 0, 0, 0, 0, 2240, 58149, 92064, 84762, 125665, 0, 0, 0, 0, 0, 0, 228221, 760725, 805530, 722250, 1112074
Offset: 0

Views

Author

Peter Luschny, Nov 19 2020

Keywords

Comments

The size of the centralizer of a partition p is aut(p) = Product_{j = 1..k} m(j)!*j^m(j), where m(j) is the multiplicity of j as a part of p. (For instance p = [2, 2, 2] -> aut(p) = 3!*2^3.)
Let M be the matrix with M(k, r) = Sum_{p in P(n, k)} n! / aut(p) where P(n, k) are the partitions of n with largest part k and length(p) = r. Then T(n, k) = Sum_{j=0..k} M(j, k-j+1), which are the antidiagonal sums of the upper triangular part of the matrix M.
In the example section below it is explained how the matrix M leads to a two-dimensional classification of the permutations of [n] which project to the unsigned Stirling cycle numbers and the number of permutations with longest cycle length.

Examples

			Triangle starts:
0:  [1]
1:  [0, 1]
2:  [0, 0, 2]
3:  [0, 0, 0, 6]
4:  [0, 0, 0, 3,  21]
5:  [0, 0, 0, 0,  35,   85]
6:  [0, 0, 0, 0,  55,  255,     410]
7:  [0, 0, 0, 0,   0, 1015,    1659,  2366]
8:  [0, 0, 0, 0,   0, 2485,   10528, 11242, 16065]
9:  [0, 0, 0, 0,   0, 2240,   58149, 92064, 84762, 125665]
----------------------------------------------------------
Sum  1, 1, 2, 9, 111, 6080, 2331767, ...
.
Examples for the basic two-dimensional classification of permutations (dots indicate zeros):
.
* Case n = 6:
   |   1     2     3    4    5    6  | Sum
-------------------------------------|----
1  |   .     .     .    .    .   [1] |   1
2  |   .     .   [ 15] [45] [15]     |  75
3  |   .   [ 40] [120] [40]          | 200
4  |   .   [ 90] [ 90]               | 180
5  |   .   [144]                     | 144
6  | [120]                           | 120
-------------------------------------|----
Sum| 120,  274,   225,  85,  15,  1  | 720
.
Antidiagonals: [40 + 15, 90 + 120 + 45, 120 + 144 + 90 + 40 + 15 + 1]
Leads to row 6 (disregarding leading zeros): 55 + 255 + 410 = 720.
.
* Case n = 7:
   |  1      2     3     4     5    6    7  | Sum
--------------------------------------------|-----
1  |  .      .     .     .     .    .   [1] |    1
2  |  .      .     .   [105] [105] [21]     |  231
3  |  .      .   [490] [420] [ 70]          |  980
4  |  .    [420] [630] [210]                | 1260
5  |  .    [504] [504]                      | 1008
6  |  .    [840]                            |  840
7  | [720]                                  |  720
--------------------------------------------|-----
Sum| 720,  1764,  1624, 735,  175,  21,  1  | 5040
.
Antidiagonals: [420+490+105, 504+630+420+105, 720+840+504+210+70+21+1]
Leads to row 7 (disregarding leading zeros): 1015 + 1659 + 2366 = 5040
.
* Column sums of the matrix give the unsigned Stirling cycle numbers, A132393.
* Row sums of the matrix give the number of permutations of n elements whose longest cycle have length k, A126074.
* The main antidiagonal of the matrix gives the number of n-permutations that are pure cycles of length n - k, A092271.
* The entries of the matrix sum to n!. In particular the sum over all row sums, the sum over all column sums, and the sum over all antidiagonal sums is n!.
* The columns of the triangle are finite in the sense that their entries become ultimately zero. Column sums of the triangle are A339015.
		

Crossrefs

Cf. A000142 (row sums), A339015 (column sums), A132393, A126074, A092271, A121726, A339033, A006231, A002104.

Programs

  • SageMath
    # For illustration computes also A132393 and A126074 (remove the #).
    def A339016Row(n):
        f = factorial(n); M = matrix(n + 2)
        for k in (0..n):
            for p in Partitions(n, max_part=k, inner=[k]):
                M[k, len(p)] += (f // p.aut())
        # print("max cyc len", [sum(M[k, j] for j in (0..n+1)) for k in (0..n)])
        # print("Stirling 1 ", [sum(M[j, k] for j in (0..n+1)) for k in (0..n)])
        if n == 0: return [1]
        return [sum(M[j, k-j+1] for j in srange(k, 0, -1)) for k in (0..n)]
    for n in (0..9): print(A339016Row(n))

Formula

T(n, n) = A006231(n) + 1 = A002104(n) - (n-1) (after Franklin T. Adams-Watters in A121726).

A291484 Expansion of e.g.f. arctanh(x)*exp(x).

Original entry on oeis.org

0, 1, 2, 5, 12, 49, 190, 1301, 7224, 69441, 495898, 6095429, 53005700, 792143793, 8110146070, 142633278997, 1679413757168, 33964965659649, 451969255722162, 10331348137881349, 153288815339260796, 3907452790559751857, 63949589015139119598, 1798373345567005989781, 32179694275204166066728
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 24 2017

Keywords

Examples

			E.g.f.: A(x) = x/1! + 2*x^2/2! + 5*x^3/3! + 12*x^4/4! + 49*x^5/5! + ...
		

Crossrefs

Cf. A002104, A002741, A009739, A009832, A010050, A012709, A087208 (first differences), A279927.

Programs

  • Maple
    a:=series(arctanh(x)*exp(x),x=0,25): seq(n!*coeff(a,x,n),n=0..24); # Paolo P. Lava, Mar 27 2019
  • Mathematica
    nmax = 24; Range[0, nmax]! CoefficientList[Series[ArcTanh[x] Exp[x], {x, 0, nmax}], x]
    nmax = 24; Range[0, nmax]! CoefficientList[Series[Log[(1 + x)/(1 - x)] Exp[x]/2, {x, 0, nmax}], x]
    nmax = 24; Range[0, nmax]! CoefficientList[Series[Sum[x^(2 k + 1)/(2 k + 1), {k, 0, Infinity}] Exp[x], {x, 0, nmax}], x]
    Table[Sum[Binomial[n+1,2k+1](n-2k)/(n+1) (2 k)!, {k,0,n/2}],{n,0,12}] (* Emanuele Munarini, Dec 16 2017 *)
  • Maxima
    makelist(sum(binomial(n+1,2*k+1)*(n-2*k)/(n+1)*(2*k)!,k,0,floor(n/2)),n,0,12); /* Emanuele Munarini, Dec 16 2017 */
    
  • PARI
    first(n) = x='x+O('x^n); Vec(serlaplace(atanh(x)*exp(x)), -n) \\ Iain Fox, Dec 16 2017

Formula

E.g.f.: log((1 + x)/(1 - x))*exp(x)/2.
From Emanuele Munarini, Dec 16 2017: (Start)
a(n) = Sum_{k=0..n/2} binomial(n+1,2*k+1)*((n-2*k)/(n+1))*(2*k)!.
a(n+3) - a(n+2) - (n+1)*(n+2)*a(n+1) + (n+1)*(n+2)*a(n) = 1.
a(n+4) - 2*a(n+3) - (n^2+5*n+5)*a(n+2) + 2*(n+2)^2*a(n+1) - (n+1)*(n+2)*a(n) = 0.
(End)
a(n) ~ (n-1)! * (exp(1) - (-1)^n * exp(-1))/2. - Vaclav Kotesovec, Dec 16 2017

A336291 a(n) = (n!)^2 * Sum_{k=1..n} 1 / (k * ((n-k)!)^2).

Original entry on oeis.org

0, 1, 6, 39, 424, 7905, 227766, 9324511, 512970144, 36452217969, 3247711402870, 354391640998791, 46474986465907176, 7210874466760191409, 1306387103147257800774, 273269900360634449732895, 65363179181419926246184576, 17726298367452515070739268001
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 16 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n!)^2 Sum[1/(k ((n - k)!)^2), {k, 1, n}], {n, 0, 17}]
    nmax = 17; CoefficientList[Series[-Log[1 - x] BesselI[0, 2 Sqrt[x]], {x, 0, nmax}], x] Range[0, nmax]!^2
  • PARI
    a(n) = (n!)^2 * sum(k=1, n, 1 / (k * ((n-k)!)^2)); \\ Michel Marcus, Jul 17 2020

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = -log(1 - x) * BesselI(0,2*sqrt(x)).
a(n) ~ BesselI(0,2) * (n!)^2 / n. - Vaclav Kotesovec, Jul 17 2020
a(n) = Sum_{k=1..n} (k-1)!*k!*binomial(n,k)^2. - Ridouane Oudra, Jun 15 2025

A356925 E.g.f. satisfies A(x) = 1/(1 - x)^(exp(x) * A(x)).

Original entry on oeis.org

1, 1, 6, 51, 614, 9655, 188209, 4389532, 119363488, 3711190881, 129932611723, 5060364817200, 217054300138136, 10168837756846145, 516709033266165479, 28306732060349788908, 1663231006737554997168, 104344911495734048046929
Offset: 0

Views

Author

Seiichi Manyama, Sep 04 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[LambertW[E^x * Log[1-x]]/(E^x * Log[1-x]), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 14 2022 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k+1)^(k-1)*(-exp(x)*log(1-x))^k/k!)))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(exp(x)*log(1-x)))))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(lambertw(exp(x)*log(1-x))/(exp(x)*log(1-x))))

Formula

E.g.f.: A(x) = Sum_{k>=0} (k+1)^(k-1) * (-exp(x) * log(1-x))^k / k!.
E.g.f.: A(x) = exp( -LambertW(exp(x) * log(1-x)) ).
E.g.f.: A(x) = LambertW(exp(x) * log(1-x))/(exp(x) * log(1-x)).
a(n) ~ sqrt(1 + exp(1+r)/(1-r)) * n^(n-1) / (r^(n - 1/2) * exp(n-1)), where r = 0.249272970940807862774650581662931601739615720771408527... is the root of the equation exp(1+r) * log(1-r) = -1. - Vaclav Kotesovec, Nov 14 2022

A114633 a(n) = (n+1)*(n+2)/2 * Sum_{k=0..floor(n/2)} n!/(n-2*k)!.

Original entry on oeis.org

1, 3, 18, 70, 555, 2961, 31108, 213228, 2799765, 23455135, 369569046, 3659001138, 67261566463, 768390239085, 16142775951240, 209002145031256, 4939689441079593, 71478733600689723, 1877081987610245530, 30021068112289683870, 867211878275933435091, 15190660464818580038473
Offset: 0

Views

Author

Creighton Dement, Feb 17 2006

Keywords

Comments

Formula was found by Paul D. Hanna.
Related to logarithmic numbers A002104.

Crossrefs

Programs

  • Maple
    a:= n-> (n+1)*(n+2)/2*sum(n!/(n-2*k)!,k=0..floor(n/2)): seq(a(n), n=0..20);
  • Mathematica
    Rest[Rest[With[{nn=25}, CoefficientList[Series[Exp[x]/(1 - x^2)(x^2/2), {x, 0, nn}], x] Range[0, nn]!]]] (* Vincenzo Librandi, Sep 03 2017 *)

Formula

a(n) = A087208(n)*(n+1)*(n+2)/2. - Paul D. Hanna
E.g.f.: exp(x)/(1-x^2)*(x^2/2) (with offset 2). - Zerinvary Lajos, Apr 03 2009

Extensions

More terms from Vincenzo Librandi, Sep 03 2017

A302581 a(n) = n! * [x^n] -exp(-n*x)*log(1 - x).

Original entry on oeis.org

0, 1, -3, 20, -186, 2249, -33360, 586172, -11901008, 274098393, -7060189120, 201092672604, -6275340884736, 212915635727313, -7803567334571008, 307245946117223700, -12933084380738398208, 579587518114690731601, -27550568677612746940416, 1384553892443352890245636
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 10 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[-Exp[-n x] Log[1 - x], {x, 0, n}], {n, 0, 19}]
    Table[Sum[(-n)^(n - k) (k - 1)! Binomial[n, k], {k, 1, n}], {n, 0, 19}]
    nmax = 20; CoefficientList[Series[-Log[1 - LambertW[x]]/(1 + LambertW[x]), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 09 2019 *)

Formula

a(n) = Sum_{k=1..n} (-n)^(n-k)*(k-1)!*binomial(n,k).
E.g.f.: -log(1 - LambertW(x))/(1 + LambertW(x)). - Vaclav Kotesovec, Jun 09 2019
a(n) ~ -(-1)^n * log(2) * n^n. - Vaclav Kotesovec, Jun 09 2019
Previous Showing 21-30 of 39 results. Next