cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 81 results. Next

A091868 a(n) = (n!)^(n+1).

Original entry on oeis.org

1, 1, 8, 1296, 7962624, 2985984000000, 100306130042880000000, 416336312719673760153600000000, 281633758444745849464726940024832000000000, 39594086612242519324387557078266845776303882240000000000
Offset: 0

Views

Author

Nicolau C. Saldanha (nicolau(AT)mat.puc-rio.br), Mar 10 2004

Keywords

Comments

Let f(x) be a monic polynomial of degree n. Let u be any number and let m be the matrix of values f(u+i-j) for i,j=1..n. Then the determinant of m is a(n). - T. D. Noe, Aug 23 2008
From Andrew Weimholt, Sep 23 2009: (Start)
Also, number of ways to assemble an n-simplex from n+1 labeled (n-1)-simplices with labeled vertices, where left-handed and right-handed counterparts are considered equivalent.
For n=2, we are constructing a triangle from 3 labeled line-segments with labeled endpoints. Solutions which differ by a rotation or a reflection are considered equivalent. Because reflections are equivalent, there is only 1 way to order the line-segments, and each line-segment can be oriented in 2 ways, so the total number of solutions is 2^3 = 8. For n=3, we are constructing a tetrahedron from 4 labeled triangles with labeled vertices. Without loss of generality, we can pick one labeled triangle to serve as our face of reference. For this face, we do not care which side of the triangle will face the interior of the tetrahedron as this just translates into a reflection of the tetrahedron, nor do we care about which rotation we pick as these just translate into rotations of the tetrahedron. From this reference triangle, there are 6 (=3!) ways to assign the remaining triangles to the faces of the tetrahedron, and each triangle can be oriented in 6 (=3!) ways (we can pick which side of the triangle will face the interior of the tetrahedron, and we can pick from 3 rotations). This gives 6^4 solutions.
Cf. A165644 (same idea, but reflections are distinct). A165642 and A165643 are the corresponding sequences for cubes instead of simplices. (End)
a(n) is the number of preference profiles in the stable marriage problem with n women and n men, where all the men rank women in the same order. Given such a profile, the Gale-Shapley men-proposing algorithm ends in n rounds. Equivalently, this is the number of preference profiles where all the women rank men in the same order. - Tanya Khovanova and MIT PRIMES STEP Senior group, May 23 2021
a(n-1) is the determinant of the n X n matrix with elements m(i,j) = s(n+i-1,j), 1 <= i <= n, 1 <= j <= n, where s(x,y) are the unsigned Stirling numbers of the first kind. - Fabio VisonĂ , May 22 2022

Crossrefs

Cf. A036740.

Programs

  • Magma
    [Factorial(n)^(n+1): n in [0..10]]; // Vincenzo Librandi, Nov 25 2015
  • Maple
    (n!)^(n+1);
    a[0]:=1:for n from 1 to 20 do a[n]:=product(n!, k=0..n) od: seq(a[n], n=0..8); # Zerinvary Lajos, Jun 11 2007
    seq(mul(mul(j,j=1..n), k=0..n), n=0..8); # Zerinvary Lajos, Sep 21 2007
  • Mathematica
    Table[(n!)^(n+1),{n,0,8}] (* Harvey P. Dale, Apr 30 2012 *)

Formula

a(n) = (n!)^(n+1) = a(n-1) * n^n * n!.
a(n) = A000178(n)*A002109(n), i.e., product of superfactorials and hyperfactorials. - Henry Bottomley, Nov 13 2009
a(n) ~ (2*Pi)^((n+1)/2) * n^((n+1)*(2*n+1)/2) / exp(n^2 + n - 1/12). - Vaclav Kotesovec, Jul 10 2015

Extensions

Edited by N. J. A. Sloane, Oct 24 2009 at the suggestion of R. J. Mathar
a(9) from Vincenzo Librandi, Nov 25 2015

A255358 Product_{k=0..n} (k^3)!.

Original entry on oeis.org

1, 1, 40320, 439039216240867959122165760000000
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 21 2015

Keywords

Comments

The next term a(4) has 122 digits.

Crossrefs

Programs

  • Mathematica
    Table[Product[(k^3)!, {k, 0, n}], {n, 0, 6}]
    Table[Product[j^(n - Ceiling[j^(1/3)] + 1), {j, 1, n^3}], {n, 0, 6}] (* Vaclav Kotesovec, Apr 25 2024 *)

Formula

a(n) ~ c * n^(29/40 + 3*n/2 + 3*n^2/4 + 3*n^3/2 + 3*n^4/4) * (2*Pi)^(n/2) / exp(n*(n+2)*(12 - 6*n + 7*n^2)/16), where c = A255511 = 4.113740552015338123052453340090368136...
a(n) = Product_{j=1..n^3} j^(n - ceiling(j^(1/3)) + 1). - Vaclav Kotesovec, Apr 25 2024

A056606 Squarefree kernel of lcm(binomial(n,0), ..., binomial(n,n)).

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 30, 105, 70, 42, 210, 2310, 2310, 4290, 6006, 15015, 30030, 170170, 510510, 1939938, 1385670, 881790, 9699690, 223092870, 44618574, 17160990, 74364290, 31870410, 223092870, 6469693230, 6469693230, 100280245065
Offset: 0

Views

Author

Labos Elemer, Aug 07 2000

Keywords

Comments

Also squarefree kernel of A001142; row products in table A256113. - Reinhard Zumkeller, Mar 21 2015
a(2372) has 1001 decimal digits. - Michael De Vlieger, Jul 14 2017
Also the squarefree kernel of the cumulative product of n^n/n!. - Peter Luschny, Dec 21 2019
Conjecture: the few odd values belong to A070826. - Bill McEachen, Jun 24 2023
And their indices appear to be A007053. - Michel Marcus, Jul 01 2023

Examples

			a(7) = 105 because lcm(1, 7, 21, 35) = 105 is already squarefree.
a(0) = 1 because n^n/n! = 1 for the integer n = 0. - _Peter Luschny_, Dec 21 2019
		

Crossrefs

Programs

  • Haskell
    a056606 = a007947 . a001142  -- Reinhard Zumkeller, Mar 21 2015
    
  • Maple
    h := n -> mul(k^k/factorial(k), k=0..n):
    rad := n -> mul(k, k = numtheory[factorset](n)):
    seq(rad(h(n)), n=0..31); # Peter Luschny, Dec 21 2019
  • Mathematica
    Table[Apply[Times, FactorInteger[Product[k^(2 k - 1 - n), {k, n}]][[All, 1]]], {n, 0, 31}] (* or *)
    Table[Apply[Times, FactorInteger[Apply[LCM, Range@ n]/n][[All, 1]]], {n, 1, 32}] (* Michael De Vlieger, Jul 14 2017 *)
  • PARI
    rad(n) = factorback(factorint(n)[, 1]); \\ A007947
    a(n) = rad(lcm(vector(n+1, k, binomial(n,k-1)))); \\ Michel Marcus, Jun 24 2023

Formula

a(n) = A007947(A002944(n+1)). - Michel Marcus, Dec 21 2019
a(n) = radical(hyperfactorial(n)/superfactorial(n)) = A007947(A002109(n)/ A000178(n)) for n >= 0. - Peter Luschny, Dec 21 2019

Extensions

Extended with a(0) = 1 by Peter Luschny, Dec 21 2019

A105658 a(n) = (Product_{i=1..n} i^i) / denominator( Sum_{j=1..n} j*(j+1)/2 / (Product_{k=0..j-1} j!/k!) ).

Original entry on oeis.org

1, 1, 1, 3, 2, 5, 3, 7, 4, 9, 5, 11, 6, 143, 7, 15, 104, 935, 9, 19, 10, 21, 11, 4025, 3900, 325, 3289, 27, 14, 29, 15, 31, 368, 33, 17, 35, 18, 185, 19, 39, 380, 451, 399, 215, 770, 45, 23, 29563, 24, 12397, 725, 51, 26, 1537, 837, 2365, 1036, 285, 377, 2537, 30
Offset: 0

Views

Author

Jess E. Boling (tdbpeekitup(AT)yahoo.com), Apr 17 2005

Keywords

Comments

Most of the time a(2n-1)=2n-1, but a(2n-1)!=2n-1 for 2n-1 = 13,17,23,25,37,41,43,47,49,53,55,57,59,61,63,...
Most of the time a(2n)=n, but a(2n)!=n for 2n = 16,24,26,32,40,42,44,50,54,56,58,64,84,86,96,100,102,104,...

Examples

			a(3) = 108/36 = 3.
		

Crossrefs

Cf. A002109 (hyperfactorial numbers).

Programs

  • Mathematica
    f[n_] := Product[k^k, {k, 1, n}]/ Denominator[Sum[i(i + 1)/2/Product[i!/j!, {j, 0, i - 1}], {i, n}]]; Table[ f[n], {n, 0, 61}] (* Robert G. Wilson v, Apr 18 2005 *)
  • PARI
    a(n) = prod(i=1, n, i^i) / denominator(sum(j=1, n, j*(j+1)/2 / prod(k=0, j-1, j!/k!))) \\ Jason Yuen, Jan 18 2025

Extensions

Edited by Robert G. Wilson v, Apr 18 2005
Name corrected by Jason Yuen, Jan 18 2025

A255359 a(n) = Product_{k=0..n} (k^4)!.

Original entry on oeis.org

1, 1, 20922789888000
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 21 2015

Keywords

Comments

The next term a(3) has 135 digits.

Crossrefs

Programs

  • Mathematica
    Table[Product[(k^4)!, {k, 0, n}], {n, 0, 5}]
    Table[Product[j^(n - Ceiling[j^(1/4)] + 1), {j, 1, n^4}], {n, 0, 5}] (* Vaclav Kotesovec, Apr 25 2024 *)

Formula

a(n) ~ c * n^(1 + 28*n/15 + 4*n^3/3 + 2*n^4 + 4*n^5/5) * (2*Pi)^(n/2) / exp(19*n/9 + n^4/2 + 9*n^5/25), where c = A255438 = 6.644987918706354049483118... .
a(n) = Product_{j=1..n^4} j^(n - ceiling(j^(1/4)) + 1). - Vaclav Kotesovec, Apr 25 2024

A255360 Product_{k=0..n} (k^5)!.

Original entry on oeis.org

1, 1, 263130836933693530167218012160000000
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 21 2015

Keywords

Comments

The next term a(3) has 512 digits.
In general (for m>1), product_{k=0..n} (k^m)! ~ c(m) * (2*Pi)^(n/2) * n^(m*(1/4 + n/2 + B(m+1)/(m+1) + (sum_{j=1..n} j^m) )) * exp(-m*n/2 - m*n^(m+1)/(m+1)^2 - (sum_{j=1..n} j^m) + m * (sum_{j=1..m-1} 1/(j+1) * B(j+1) * binomial(m, j) * n^(m-j) * (sum_{i=0..j-1} 1/(m-i)) )), where c(m) is a constant and B(n) is the Bernoulli number A027641(n)/A027642(n).

Crossrefs

Programs

  • Mathematica
    Table[Product[(k^5)!, {k, 0, n}], {n, 0, 4}]
    Table[Product[j^(n - Ceiling[j^(1/5)] + 1), {j, 1, n^5}], {n, 0, 4}] (* Vaclav Kotesovec, Apr 25 2024 *)

Formula

a(n) ~ c * n^(80/63 + 5*n/2 - 5*n^2/12 + 25*n^4/12 + 5*n^5/2 + (5*n^6)/6) * (2*Pi)^(n/2) / exp(5*n/2 + 35*n^2/144 + n^5/2 + 11*n^6/36), where c = A255439 = 11.354954749729782312106... .
a(n) = Product_{j=1..n^5} j^(n - ceiling(j^(1/5)) + 1). - Vaclav Kotesovec, Apr 25 2024

A343657 Sum of number of divisors of x^y for each x >= 1, y >= 0, x + y = n.

Original entry on oeis.org

1, 2, 4, 7, 12, 18, 27, 39, 56, 77, 103, 134, 174, 223, 283, 356, 445, 547, 666, 802, 959, 1139, 1344, 1574, 1835, 2128, 2454, 2815, 3213, 3648, 4126, 4653, 5239, 5888, 6608, 7407, 8298, 9288, 10385, 11597, 12936, 14408, 16025, 17799, 19746, 21882, 24221
Offset: 1

Views

Author

Gus Wiseman, Apr 29 2021

Keywords

Examples

			The a(7) = 27 divisors:
  1  32  81  64  25  6  1
     16  27  32  5   3
     8   9   16  1   2
     4   3   8       1
     2   1   4
     1       2
             1
		

Crossrefs

Antidiagonal row sums (row sums of the triangle) of A343656.
Dominated by A343661.
A000005(n) counts divisors of n.
A000312(n) = n^n.
A007318(n,k) counts k-sets of elements of {1..n}.
A009998(n,k) = n^k (as an array, offset 1).
A059481(n,k) counts k-multisets of elements of {1..n}.
A343658(n,k) counts k-multisets of divisors of n.

Programs

  • Mathematica
    Total/@Table[DivisorSigma[0,k^(n-k)],{n,30},{k,n}]

Formula

a(n) = Sum_{k=1..n} A000005(k^(n-k)).

A260178 a(n) = hyperfactorial(prime(n)-1) mod prime(n).

Original entry on oeis.org

1, 1, 3, 1, 10, 8, 13, 18, 22, 17, 30, 6, 9, 42, 1, 30, 1, 50, 66, 70, 27, 1, 1, 34, 22, 10, 1, 1, 76, 15, 1, 130, 37, 1, 105, 150, 28, 162, 166, 93, 178, 19, 1, 81, 14, 1, 1, 222, 226, 107, 144, 238, 64, 1, 16, 1, 82, 270, 60, 53, 1, 155, 1, 310, 288, 203, 1
Offset: 1

Views

Author

Matthew Campbell, Jul 17 2015

Keywords

Examples

			a(2) = hyperfactorial(2) mod 3 = (2^2*1^1) mod 3 = 4 mod 3 = 1.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local i, p, r, v;
          p, r, v:= ithprime(n), 1$2;
          for i from p-1 to 1 by -1 do
            v:= v*i mod p; r:= r*v mod p
          od; r
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Jul 21 2015
  • Mathematica
    Table[Mod[Hyperfactorial[Prime[n] - 1], Prime[n]], {n, 1, 200}]
  • PARI
    a(n,p=prime(n))=lift(prod(k=2,p-1,Mod(k,p)^k)) \\ Charles R Greathouse IV, Jul 23 2015

Formula

a(n) = A002109(A000040(n)-1) mod A000040(n).

A303281 Expansion of (x/(1 - x)) * (d/dx) Sum_{p prime, k>=1} x^(p^k)/(1 - x^(p^k)).

Original entry on oeis.org

0, 2, 5, 13, 18, 30, 37, 61, 79, 99, 110, 146, 159, 187, 217, 281, 298, 352, 371, 431, 473, 517, 540, 636, 686, 738, 819, 903, 932, 1022, 1053, 1213, 1279, 1347, 1417, 1561, 1598, 1674, 1752, 1912, 1953, 2079, 2122, 2254, 2389, 2481, 2528, 2768, 2866, 3016, 3118, 3274, 3327, 3543, 3653
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 20 2018

Keywords

Comments

Sum of exponents in prime-power factorization of hyperfactorial: Product_{k=1..n} k^k (A002109).
Partial sums of A066959.

Examples

			a(4) = 13 because 2^2*3^3*4^4 = 2^10*3^3 and 10 + 3 = 13.
		

Crossrefs

Programs

  • Mathematica
    nmax = 55; Rest[CoefficientList[Series[x/(1 - x) D[Sum[Boole[PrimePowerQ[k]] x^k/(1 - x^k), {k, 1, nmax}], x], {x, 0, nmax}], x]]
    Table[PrimeOmega[Hyperfactorial[n]], {n, 55}]
    Table[Sum[k PrimeOmega[k], {k, n}], {n, 55}]
    Accumulate[Table[k * PrimeOmega[k], {k, 1, 55}]] (* Amiram Eldar, Jun 13 2025 *)
  • PARI
    a(n) = sum(k=1, n, k*bigomega(k)); \\ Altug Alkan, Apr 20 2018

A054374 Discriminant of Hermite polynomials.

Original entry on oeis.org

1, 32, 55296, 7247757312, 92771293593600000, 141830962344853556428800000, 30619440571316366848044102687129600000, 1077325790213073725701226681195621188514296627200000
Offset: 1

Views

Author

Keywords

Comments

A054374 gives the discriminants of the Hermite polynomials in the conventional (physicists') normalization, and A002109 gives the discriminants of the Hermite polynomials in the (in my opinion more natural) probabilists' normalization. See refs Wikipedia and Szego eq. (6.71.7). - Alan Sokal, Mar 02 2012

References

  • G. Szego, Orthogonal Polynomials, American Mathematical Society, 1981 edition, 432 Pages.

Crossrefs

Cf. A002109.

Programs

  • Magma
    [Round(2^(3*n*(n-1)/2)*(&*[j^j: j in [1..n]])): n in [1..8]]; // G. C. Greubel, Jun 10 2018
  • Mathematica
    Table[2^(3n(n-1)/2)Product[k^k,{k,1,n}],{n,1,8}] (* Indranil Ghosh, Feb 24 2017 *)
  • PARI
    for(n=1,8, print1(2^(3*n*(n-1)/2)*prod(j=1,n, j^j), ", ")) \\ G. C. Greubel, Jun 10 2018
    

Formula

a(n) = 2^(3*n*(n-1)/2) * Product_{k=1..n} k^k.
a(n) ~ A * 2^(3*n*(n-1)/2) * n^(n*(n+1)/2 + 1/12) / exp(n^2/4), where A is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Mar 02 2023
Previous Showing 31-40 of 81 results. Next