cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 829 results. Next

A006995 Binary palindromes: numbers whose binary expansion is palindromic.

Original entry on oeis.org

0, 1, 3, 5, 7, 9, 15, 17, 21, 27, 31, 33, 45, 51, 63, 65, 73, 85, 93, 99, 107, 119, 127, 129, 153, 165, 189, 195, 219, 231, 255, 257, 273, 297, 313, 325, 341, 365, 381, 387, 403, 427, 443, 455, 471, 495, 511, 513, 561, 585, 633, 645, 693, 717, 765, 771, 819, 843
Offset: 1

Views

Author

Keywords

Comments

If b > 1 is a binary palindrome then both (2^(m+1) + 1)*b and 2^(m+1) + 2^m - b are also, where m = floor(log_2(b)). - Hieronymus Fischer, Feb 18 2012
Floor and ceiling: If d > 0 is any natural number, then A206913(d) is the greatest binary palindrome <= d and A206914(d) is the least binary palindrome >= d. - Hieronymus Fischer, Feb 18 2012
The greatest binary palindrome <= the n-th non-binary-palindrome is that binary palindrome with number A154809(n)-n+1. The corresponding formula identity is: A206913(A154809(n)) = A006995(A154809(n)-n+1). - Hieronymus Fischer, Mar 18 2012
From Hieronymus Fischer, Jan 23 2013: (Start)
The number of binary digits of a(n) is A070939(a(n)) = 1 + floor(log_2(n)) + floor(log_2(n/3)), for n > 1.
Also: A070939(a(n)) = A070939(n) + A070939(floor(n/3)) - 1, for n <> 2. (End)
Rajasekaran, Shallit, & Smith show that this is an additive basis of order 4. - Charles R Greathouse IV, Nov 06 2018

Examples

			a(3) = 3, since 3 = 11_2 is the 3rd symmetric binary number;
a(6) = 9, since 9 = 1001_2 is the 6th symmetric binary number.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A057148 for the binary representations.
Cf. A178225, A005408, A164126, A154809 (complement).
Even numbers that are not the sum of two terms: A241491, A261678, A262556.
Cf. A145799.
Primes: A016041 and A117697.
Cf. A000051 (a subsequence).

Programs

  • Haskell
    a006995 n = a006995_list !! (n-1)
    a006995_list = 0 : filter ((== 1) . a178225) a005408_list
    -- Reinhard Zumkeller, Oct 21 2011
    
  • Magma
    [n: n in [0..850] | Intseq(n,2) eq Reverse(Intseq(n,2))];  // Bruno Berselli, Aug 29 2011
    
  • Maple
    dmax:= 15; # to get all terms with at most dmax binary digits
    revdigs:= proc(n)
      local L, Ln, i;
      L:= convert(n,base,2);
      Ln:= nops(L);
      add(L[i]*2^(Ln-i),i=1..Ln);
    end proc;
    A:= {0,1}:
    for d from 2 to dmax do
      if d::even then
        A:= A union {seq(2^(d/2)*x + revdigs(x),x=2^(d/2-1)..2^(d/2)-1)}
      else
        m:= (d-1)/2;
        B:={seq(2^(m+1)*x + revdigs(x),x=2^(m-1)..2^m-1)};
        A:= A union B union map(`+`,B,2^m)
      fi
    od:
    A;  # Robert Israel, Aug 17 2014
  • Mathematica
    palQ[n_Integer, base_Integer] := Module[{idn=IntegerDigits[n, base]}, idn==Reverse[idn]]; Select[Range[1000], palQ[ #, 2]&]
    Select[ Range[0, 1000], # == IntegerReverse[#, 2] &] (* Robert G. Wilson v, Feb 24 2018 *)
    Select[Range[0, 1000], PalindromeQ[IntegerDigits[#, 2]]&] (* Jean-François Alcover, Mar 01 2018 *)
  • PARI
    for(n=0,999,n-subst(Polrev(binary(n)),x,2)||print1(n,",")) \\ Thomas Buchholz, Aug 16 2014
    
  • PARI
    for(n=0,10^3, my(d=digits(n,2)); if(d==Vecrev(d), print1(n,", "))); \\ Joerg Arndt, Aug 17 2014
    
  • PARI
    is_A006995(n)=Vecrev(n=binary(n))==n \\ M. F. Hasler, Feb 23 2018
    
  • PARI
    A006995(n,m=logint(n,2),c=1<<(m-1),a,d)={if(n>=3*c,a=n-3*c;d=2*c^2,a=n-2*c;n%2*c+d=c^2)+sum(k=1,m-2^(n<3*c),if(bittest(a,m-1-k),1<>k))+(n>2)} \\ Based on Fischer's smalltalk program. - M. F. Hasler, Feb 23 2018
    
  • Python
    from itertools import count, islice, product
    def bin_pals(): # generator of binary palindromes in base 10
        yield from [0, 1]
        digits, midrange = 2, [[""], ["0", "1"]]
        for digits in count(2):
            for p in product("01", repeat=digits//2-1):
                left = "1"+"".join(p)
                for middle in midrange[digits%2]:
                    yield int(left + middle + left[::-1], 2)
    print(list(islice(bin_pals(), 58))) # Michael S. Branicky, Jan 09 2023
    
  • Python
    def A006995(n):
        if n == 1: return 0
        a = 1<<(l:=n.bit_length()-2)
        m = a|(n&a-1)
        return (m<Chai Wah Wu, Jun 10 2024
  • Sage
    def palgenbase2(): # generator of palindromes in base 2
        yield 0
        x, n, n2 = 1, 1, 2
        while True:
            for y in range(n,n2):
                s = format(y,'b')
                yield int(s+s[-2::-1],2)
            for y in range(n,n2):
                s = format(y,'b')
                yield int(s+s[::-1],2)
            x += 1
            n *= 2
            n2 *= 2 # Chai Wah Wu, Jan 07 2015
    
  • Sage
    [n for n in (0..843) if Word(n.digits(2)).is_palindrome()] # Peter Luschny, Sep 13 2018
    
  • Smalltalk
    A006995
    "Answer the n-th binary palindrome
    (nonrecursive implementation)"
    | m n a b c d k2 |
    n := self.
    n = 1 ifTrue: [^0].
    n = 2 ifTrue: [^1].
    m := n integerFloorLog: 2.
    c := 2 raisedToInteger: m - 1.
    n >= (3 * c)
      ifTrue:
       [a := n - (3 * c).
       d := 2 * c * c.
       b := d + 1.
       k2 := 1.
       1 to: m - 1
        do:
         [:k |
         k2 := 2 * k2.
         b := b + (a * k2 // c \\ 2 * (k2 + (d // k2)))]]
      ifFalse:
       [a := n - (2 * c).
       d := c * c.
       b := d + 1 + (n \\ 2 * c).
       k2 := 1.
       1 to: m - 2
        do:
         [:k |
         k2 := 2 * k2.
         b := b + (a * k2 // c \\ 2 * (k2 + (d // k2)))]].
    ^b // by Hieronymus Fischer, Feb 15 2013
    

Formula

A178225(a(n)) = 1; union of A048700 and A048701. - Reinhard Zumkeller, Oct 21 2011
From Hieronymus Fischer, Dec 31 2008, Jan 10 2012, Feb 18 2012: (Start)
Written as a decimal, a(10^n) has 2*n digits. For n > 1, the decimal expansion of a(10^n) starts with 22..., 23... or 24...:
a(1000) = 249903,
a(10^4) = 24183069,
a(10^5) = 2258634081,
a(10^6) = 249410097687,
a(10^7) = 24350854001805,
a(10^8) = 2229543293296319,
a(10^9) = 248640535848971067,
a(10^10)= 24502928886295666773.
Inequality: (2/9)*n^2 < a(n) < (1/4)*(n+1)^2, if n > 1.
lim sup_{n -> oo} a(n)/n^2 = 1/4, lim inf_{n -> oo} a(n)/n^2 = 2/9.
For n >= 2, a(2^n-1) = 2^(2n-2) - 1; a(2^n) = 2^(2n-2) + 1;
a(2^n+1) = 2^(2n-2) + 2^(n-1) + 1; a(2^n + 2^(n-1)) = 2^(2n-1) + 1.
Recursion for n > 2: a(n) = 2^(2k-q) + 1 + 2^p*a(m), where k = floor(log_2(n-1)), and p, q and m are determined as follows:
Case 1: If n = 2^(k+1), then p = 0, q = 0, m = 1;
Case 2: If 2^k < n < 2^k+2^(k-1), then p = k-floor(log_2(i))-1 with i = n-2^k, q = 2, m = 2^floor(log_2(i)) + i;
Case 3: If n = 2^k + 2^(k-1), then p = 0, q = 1, m = 1;
Case 4: If 2^k + 2^(k-1) < n < 2^(k+1), then p = k-floor(log_2(j))-1 with j = n-2^k-2^(k-1), q = 1, m = 2*2^floor(log_2(j))+j.
Non-recursive formula:
Let n >= 3, m = floor(log_2(n)), p = floor((3*2^(m-1)-1)/n), then
a(n) = 2^(2*m-1-p) + 1 + p*(1-(-1)^n)*2^(m-1-p) + sum_{k=1 .. m-1-p} (floor((n-(3-p)*2^(m-1))/2^(m-1-k)) mod 2)*(2^k+2^(2*m-1-p-k)). [Typo at the last exponent of the third sum term eliminated by the author, Sep 05 2018]
a(n) = 2^(2*m-2) + 1 + 2*floor((n-2^m)/2^(m-1)) + 2^(m-1)*floor((1/2)*min(n+1-2^m,2^(m-1)+1)) + 3*2^(m-1)*floor((1/2)*max(n+1-3*2^(m-1),0)) + 3*sum_{j=2 .. m-1} floor((n+2^(j-1)-2^m)/2^j)*2^(m-j). [Seems correct for n > 3. - The Editors]
Inversion formula: The index of any binary palindrome b = a(n) > 0 is n = palindromicIndex(b) = ((5-(-1)^m)/2 + Sum_{k=1..[m/2]} ([b/2^k] mod 2)/2^k)*2^[m/2], where [.] = floor(.) and m = [log_2(b)].
(End)
G.f.: g(x) = x^2 + 3x^3 + sum_{j=1..oo}( 3*2^j*(1-x^floor((j+1)/2))/(1-x)*x^((1/2)-floor((j+1)/2)) + f_j(x) - f_j(1/x))*x^(2*2^floor(j/2)+3*2^floor((j-1)/2)-(1/2)), where the f_j(x) are defined as follows:
f_1(x) = x^(1/2), and for j > 1,
f_j(x) = x^(1/2)*sum_{i=0..2^floor((j-1)/2)-1}((3+(1/2)*sum_{k=1..floor((j-1)/2)}(1-(-1)^floor(2i/2^k))*b(j,k))*x^i), where b(j,k) = 2^(floor((j-1)/2)-k)*((3+(-1)^j)*2^(2*k+1)+4) for k > 1, and b(j,1) = (2+(-1)^j)*2^(floor((j-1)/2)+1). - Hieronymus Fischer, Apr 04 2012
A044051(n) = (a(n)+1)/2 for n > 0. - Reinhard Zumkeller, Apr 20 2015
A145799(a(n)) = a(n). - Reinhard Zumkeller, Sep 24 2015
Sum_{n>=2} 1/a(n) = A244162. - Amiram Eldar, Oct 17 2020

Extensions

Edited and extended by Hieronymus Fischer, Feb 21 2012
Edited by M. F. Hasler, Feb 23 2018

A138148 Cyclops numbers with binary digits only.

Original entry on oeis.org

0, 101, 11011, 1110111, 111101111, 11111011111, 1111110111111, 111111101111111, 11111111011111111, 1111111110111111111, 111111111101111111111, 11111111111011111111111, 1111111111110111111111111, 111111111111101111111111111, 11111111111111011111111111111
Offset: 0

Views

Author

Omar E. Pol, Mar 18 2008

Keywords

Comments

All members are palindromes A002113. The first five members are mentioned in A129868.
Also, binary representation of A129868.
a(A090748(n)) is equal to A138831(n), the n-th perfect number minus 1, written in base 2.
Except for the first term (replace 0 with 1) the binary representation of the n-th iteration of the elementary cellular automaton, Rule 219 starting with a single ON (black) cell. - Robert Price, Feb 21 2016
a(1) = 101 is only prime number in this sequence since a(n) = (10^(n+1)+1)*(10^n-1)/9. - Altug Alkan, May 11 2016

Examples

			n ........ a(n) .... A129868(n): value of a(n) read in base 2.
0 ......... 0 ......... 0
1 ........ 101 ........ 5
2 ....... 11011 ....... 27
3 ...... 1110111 ...... 119
4 ..... 111101111 ..... 495
5 .... 11111011111 .... 2015
6 ... 1111110111111 ... 8127
		

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Cyclops numbers: A134808. Cf. A002113, A129868.
Cf. A002275 (repunits R_n = (10^n-1)/9), A011557 (10^n).

Programs

Formula

From Colin Barker, Feb 21 2013: (Start)
a(n) = (-1-9*10^n+10^(1+2*n))/9.
G.f.: x*(200*x-101) / ((x-1)*(10*x-1)*(100*x-1)). (End)
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n>2. - Wesley Ivan Hurt, Dec 08 2015
a(n) = A000533(n+1)*A002275(n). - Altug Alkan, May 12 2016
E.g.f.: (-1 - 9*exp(9*x) + 10*exp(99*x))*exp(x)/9. - Ilya Gutkovskiy, May 12 2016
a(n) = A002275(2n+1) - A011557(n). - M. F. Hasler, Feb 08 2020

Extensions

More terms from Omar E. Pol, Feb 09 2020

A261423 Largest palindrome <= n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 77, 77
Offset: 0

Views

Author

N. J. A. Sloane, Aug 28 2015

Keywords

Comments

Might be called the palindromic floor function.
Let P(n) = n with the second half of its digits replaced by the first half of the digits in reverse order. If P(n) <= n, then a(n) = P(n), else if n=10^k then a(n) = n-1, else a(n) = P(n-10^floor(d/2)), where d is the number of digits of n. - M. F. Hasler, Sep 08 2015
The largest differences of n - a(n) occur for n = m*R(2k) - 1, where 1 <= m <= 9 and R(k)=(10^k-1)/9. In this case, n - a(n) = 1.1*10^k - 1. - M. F. Hasler, Sep 05 2018

Crossrefs

Cf. A002113, A261424, A261914 (previous palindrome).
Cf. A262038.
Sequences related to palindromic floor and ceiling: A175298, A206913, A206914, A261423, A262038, and the large block of consecutive sequences beginning at A265509.
A262257(n) = Levenshtein distance between n and a(n). - Reinhard Zumkeller, Sep 16 2015

Programs

  • Haskell
    a261423 n = a261423_list !! n
    a261423_list = tail a261914_list  -- Reinhard Zumkeller, Sep 16 2015
    
  • Maple
    # P has list of palindromes
    palfloor:=proc(n) global P; local i;
    for i from 1 to nops(P) do
       if P[i]=n then return(n); fi;
       if P[i]>n then return(P[i-1]); fi;
    od:
    end;
  • Mathematica
    palQ[n_] := Block[{d = IntegerDigits@ n}, d == Reverse@ d]; Table[k = n;
    While[Nand[palQ@ k, k > -1], k--]; k, {n, 0, 78}] (* Michael De Vlieger, Sep 09 2015 *)
  • PARI
    A261423(n,d=digits(n),m=sum(k=1,#d\2,d[k]*10^(k-1)))={if( n%10^(#d\2)M. F. Hasler, Sep 08 2015, minor edit on Sep 05 2018
    
  • Python
    def P(n):
        s = str(n); h = s[:(len(s)+1)//2]; return int(h + h[-1-len(s)%2::-1])
    def a(n):
        s = str(n)
        if s == '1'+'0'*(len(s)-1) and n > 1: return n - 1
        Pn = P(n)
        return Pn if Pn <= n else P(n - 10**(len(s)//2))
    print([a(n) for n in range(79)]) # Michael S. Branicky, Jun 25 2021

Formula

n - a(n) < 1.1*10^floor(d/2), where d = floor(log_10(n)) + 1 is the number of digits of n. - M. F. Hasler, Sep 05 2018

A262038 Least palindrome >= n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 11, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77
Offset: 0

Views

Author

M. F. Hasler, Sep 08 2015

Keywords

Comments

Could be called nextpalindrome() in analogy to the nextprime() function A007918. As for the latter (A151800), there is the variant "next strictly larger palindrome" which equals a(n+1), and thus differs from a(n) iff n is a palindrome; see PARI code.
Might also be called palindromic ceiling function in analogy to the name "palindromic floor" proposed for A261423.

Crossrefs

Sequences related to palindromic floor and ceiling: A175298, A206913, A206914, A261423, A262038, and the large block of consecutive sequences beginning at A265509.

Programs

  • Haskell
    a262038 n = a262038_list !! n
    a262038_list = f 0 a002113_list where
       f n ps'@(p:ps) = p : f (n + 1) (if p > n then ps' else ps)
    -- Reinhard Zumkeller, Sep 16 2015
    
  • Mathematica
    palQ[n_] := Block[{d = IntegerDigits@ n}, d == Reverse@ d]; Table[k = n; While[! palQ@ k, k++]; k, {n, 0, 80}] (* Michael De Vlieger, Sep 09 2015 *)
  • PARI
    {A262038(n, d=digits(n), p(d)=sum(i=1, #d\2, (10^(i-1)+10^(#d-i))*d[i],if(bittest(#d,0),10^(#d\2)*d[#d\2+1])))= for(i=(#d+3)\2,#d,d[i]>d[#d+1-i]&&break;(d[i]9||return(p(d));d[i]=0);10^#d+1} \\ For a function "next strictly larger palindrome", delete the i==#d and n<10... part. - M. F. Hasler, Sep 09 2015
    
  • Python
    def A262038(n):
        sl = len(str(n))
        l = sl>>1
        if sl&1:
            w = 10**l
            n2 = w*10
            for y in range(n//(10**l),n2):
                k, m = y//10, 0
                while k >= 10:
                    k, r = divmod(k,10)
                    m = 10*m + r
                z = y*w + 10*m + k
                if z >= n:
                    return z
        else:
            w = 10**(l-1)
            n2 = w*10
            for y in range(n//(10**l),n2):
                k, m = y, 0
                while k >= 10:
                    k, r = divmod(k,10)
                    m = 10*m + r
                z = y*n2 + 10*m + k
                if z >= n:
                    return z # Chai Wah Wu, Sep 14 2022

A002778 Numbers whose square is a palindrome.

Original entry on oeis.org

0, 1, 2, 3, 11, 22, 26, 101, 111, 121, 202, 212, 264, 307, 836, 1001, 1111, 2002, 2285, 2636, 10001, 10101, 10201, 11011, 11111, 11211, 20002, 20102, 22865, 24846, 30693, 100001, 101101, 110011, 111111, 200002, 798644, 1000001, 1001001
Offset: 1

Views

Author

Keywords

Comments

A002779(n) = a(n)^2; A136522(A000290(a(n))) = 1. - Reinhard Zumkeller, Oct 11 2011
See A016113 for the subset of numbers whose palindromic squares have an even number of digits. - M. F. Hasler, Jun 08 2014

Examples

			26^2 = 676, which is a palindrome, so 26 is in the sequence.
27^2 = 729, which is not a palindrome, so 27 is not in the sequence.
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A003166 for binary analog.
For analogs in bases 2,3,4,5,etc. see A003166 onwards, A029984 onwards, and A263607 onwards.

Programs

  • Haskell
    a002778 n = a002778_list !! (n-1)
    a002778_list = filter ((== 1) . a136522 . (^ 2)) [0..]
    -- Reinhard Zumkeller, Oct 11 2011
    
  • Magma
    [n: n in [0..2*10^6] | Intseq(n^2) eq Reverse(Intseq(n^2))]; // Vincenzo Librandi, Apr 07 2015
    
  • Mathematica
    palsquareQ[n_] := (n2 = IntegerDigits[n^2]; n2 == Reverse[n2]); A002778 = {}; Do[ If[palsquareQ[n], Print[n]; AppendTo[A002778, n]], {n, 0, 2 * 10^6}]; A002778 (* Jean-François Alcover, Dec 01 2011 *)
    Sqrt[#]&/@Select[Range[0, 12 * 10^5]^2, # == IntegerReverse[#] &] (* The program uses the IntegerReverse function from Mathematica version 10. - Harvey P. Dale, Mar 04 2016 *)
    Select[Range[0, 1001001], PalindromeQ[#^2] &] (* Michael De Vlieger, Dec 06 2017 *)
  • PARI
    is_A002778(n)=is_A002113(n^2) \\ M. F. Hasler, Jun 08 2014
    
  • Python
    from itertools import count, islice
    def A002778_gen(): # generator of terms
        return filter(lambda k: (s:=str(k**2))[:(t:=(len(s)+1)//2)]==s[:-t-1:-1],count(0))
    A002778_list = list(islice(A002778_gen(),20)) # Chai Wah Wu, Jun 23 2022

Extensions

More terms from Patrick De Geest

A007632 Numbers that are palindromic in bases 2 and 10.

Original entry on oeis.org

0, 1, 3, 5, 7, 9, 33, 99, 313, 585, 717, 7447, 9009, 15351, 32223, 39993, 53235, 53835, 73737, 585585, 1758571, 1934391, 1979791, 3129213, 5071705, 5259525, 5841485, 13500531, 719848917, 910373019, 939474939, 1290880921, 7451111547
Offset: 1

Views

Author

Keywords

Comments

Charlton Harrison found a new record binary-decimal palindrome: 11000101111000010101010110100001110100000100000101110000101101010101000011110100011_2 = 7475703079870789703075747_10 on Dec 01 2001. The binary string contains 83 digits! Since then he has added twenty more terms. - Robert G. Wilson v, Jul 03 2006
Intersection of A002113 and A006995. - Reinhard Zumkeller, Jan 22 2012, Feb 07 2010

References

  • M. R. Calandra, Integers which are palindromic in both decimal and binary notation, J. Rec. Math., 18 (No. 1, 1985-1986), 47.
  • S. Pilpel, Some More Double Palindromic Integers, J. Rec. Math., 18 (1985), 174-176.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

For number of terms less than or equal to 10^n, see A120764.

Programs

  • Haskell
    a007632 n = a007632_list !! (n-1)
    a007632_list = filter ((== 1) . a178225) a002113_list
    -- Reinhard Zumkeller, Jan 22 2012
    
  • Magma
    [n: n in [0..2*10^7] | Intseq(n, 10) eq Reverse(Intseq(n, 10))and Intseq(n, 2) eq Reverse(Intseq(n, 2))]; // Vincenzo Librandi, Dec 31 2015
    
  • Maple
    N:= 12: # to get all terms <= 10^N
    ispal2:= proc(n) local L; if n::even then return false fi;
      L:= convert(n,base,2); evalb(L=ListTools:-Reverse(L)) end proc:
    rev10:= proc(n) local L; L:= convert(n,base,10); add(10^i*L[-i-1],i=0..nops(L)-1) end proc:
    pals10:= proc(d) local x,y;
      if d::even then [seq(x*10^(d/2)+rev10(x),x=10^(d/2-1)..10^(d/2)-1)]
      else [seq(seq(x*10^((d+1)/2)+y*10^((d-1)/2)+rev10(x), y=0..9), x=10^((d-1)/2-1)..10^((d-1)/2)-1)]
      fi
    end proc:
    0, 1, 3, 5, 7, 9, seq(op(select(ispal2,pals10(d))),d=2..N); # Robert Israel, Dec 31 2015
  • Mathematica
    NextPalindrome[n_] := Block[{l = Floor[ Log[10, n] + 1], idn = IntegerDigits[n]}, If[ Union[ idn] == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[idn, Ceiling[l/2]] ]] > FromDigits[ Take[idn, -Ceiling[l/2]]], FromDigits[ Join[ Take[idn, Ceiling[l/2]], Reverse[ Take[idn, Floor[l/2]]] ]], idfhn = FromDigits[ Take[idn, Ceiling[l/2]]] + 1; idp = FromDigits[ Join[ IntegerDigits[ idfhn], Drop[ Reverse[ IntegerDigits[ idfhn]], Mod[l, 2]] ]] ]] ]]; palQ[n_Integer, base_Integer]:= Block[{idn = IntegerDigits[n, base]}, idn == Reverse[idn]]; l = {0}; a = 0; Do[a = NextPalindrome[a]; If[ palQ[a, 2], AppendTo[l, a]], {n, 1000000}]; l (* Robert G. Wilson v, Sep 30 2004 *)
    b1=2; b2=10; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 2 10^7}]; lst (* Vincenzo Librandi, Dec 31 2015 *)
    Select[Range[0,10^5], PalindromeQ[#] && # == IntegerReverse[#, 2] &] (* Robert Price, Nov 09 2019 *)
  • PARI
    isok(n) = my(d = digits(n), b=binary(n)); (d == Vecrev(d)) && (b == Vecrev(b)); \\ Michel Marcus, Dec 31 2015
  • Python
    from itertools import chain
    A007632_list = sorted([n for n in chain((int(str(x)+str(x)[::-1]) for x in range(1,10**6)),(int(str(x)+str(x)[-2::-1]) for x in range(10**6))) if bin(n)[2:] == bin(n)[:1:-1]]) # Chai Wah Wu, Nov 23 2014
    

Extensions

One more term from George Russell (ger(AT)tzi.de), Nov 20 2000
Two further terms from Harvey P. Dale, Mar 09 2001
Further terms from George Russell (ger(AT)tzi.de), Nov 02 2001

A014190 Palindromes in base 3 (written in base 10).

Original entry on oeis.org

0, 1, 2, 4, 8, 10, 13, 16, 20, 23, 26, 28, 40, 52, 56, 68, 80, 82, 91, 100, 112, 121, 130, 142, 151, 160, 164, 173, 182, 194, 203, 212, 224, 233, 242, 244, 280, 316, 328, 364, 400, 412, 448, 484, 488, 524, 560, 572, 608, 644, 656, 692, 728, 730, 757
Offset: 1

Views

Author

Keywords

Comments

Rajasekaran, Shallit, & Smith prove that this sequence is an additive basis of order (exactly) 3. - Charles R Greathouse IV, May 03 2020

Crossrefs

Cf. A007089, A118594, A134027, A330312 (first differences).
Palindromes in bases 2 through 10: A006995, A014190, A014192, A029952, A029953, A029954, A029803, A029955, A002113.

Programs

  • Magma
    [n: n in [0..800] | Intseq(n, 3) eq Reverse(Intseq(n, 3))]; // Vincenzo Librandi, Sep 09 2015
    
  • Maple
    isA014190 := proc(n)
        local L;
        L := convert(n,base,3) ;
        ListTools[Reverse](L) = L ;
    end proc:
    for n from 0 to 500 do
        if isA014190(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Jul 07 2015
  • Mathematica
    f[n_,b_] := Module[{i=IntegerDigits[n,b]}, i==Reverse[i]]; lst={}; Do[If[f[n,3], AppendTo[lst,n]], {n,1000}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *)
  • PARI
    ispal(n,b=3)=my(d=digits(n,b)); d==Vecrev(d) \\ Charles R Greathouse IV, May 03 2020
    
  • Python
    from gmpy2 import digits
    def A014190(n):
        if n == 1: return 0
        y = 3*(x:=3**(len(digits(n>>1,3))-1))
        return int((c:=n-x)*x+int(digits(c,3)[-2::-1]or'0',3) if nChai Wah Wu, Jun 13 2024
  • Sage
    [n for n in (0..757) if Word(n.digits(3)).is_palindrome()] # Peter Luschny, Sep 13 2018
    

Formula

Sum_{n>=2} 1/a(n) = 2.61676111... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020

A136522 a(n) = 1 if n is a palindrome, otherwise 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Apr 21 2008

Keywords

Comments

a(A002113(n)) = 1; a(A029742(n)) = 0.
a(n) = A202022(n) for n <= 100, a(101) = 1, A202022(101) = 0. - Reinhard Zumkeller, Dec 10 2011

Crossrefs

Programs

  • Haskell
    a136522 n = fromEnum $ n == a004086 n  -- Reinhard Zumkeller, Apr 08 2011
    
  • Mathematica
    fQ[n_]:=Module[{id=IntegerDigits[n]}, Boole[id==Reverse[id]]]; Array[fQ, 100] (* Vladimir Joseph Stephan Orlovsky, Dec 29 2010 *)
    Table[If[PalindromeQ[n],1,0],{n,0,120}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 23 2019 *)
  • Python
    def A136522(n): return int((s:=str(n))[:(t:=(len(s)+1)//2)]==s[:-t-1:-1]) # Chai Wah Wu, Jun 23 2022

Formula

a(n) = if A004086(n) = n then 1 else 0. - Reinhard Zumkeller, Apr 08 2011
a(n) = A000007(A064834(n)). - Reinhard Zumkeller, Sep 18 2013

A033865 Start with n; if palindrome, stop; otherwise add to itself with digits reversed; a(n) gives palindrome at which it stops, or -1 if no palindrome is ever reached.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 11, 33, 44, 55, 66, 77, 88, 99, 121, 22, 33, 22, 55, 66, 77, 88, 99, 121, 121, 33, 44, 55, 33, 77, 88, 99, 121, 121, 363, 44, 55, 66, 77, 44, 99, 121, 121, 363, 484, 55, 66, 77, 88, 99, 55, 121, 363, 484, 1111, 66, 77, 88, 99, 121, 121, 66, 484, 1111, 4884, 77, 88, 99, 121, 121, 363, 484, 77, 4884, 44044, 88
Offset: 0

Views

Author

Keywords

Comments

It is believed that a(196) = -1.

Examples

			19 -> 19 + 91 = 110 -> 110 + 011 = 121, so a(19) = 121.
		

References

  • M. Donner, I Love Me, Vol. I: S. Wordrow's palindromic encyclopedia (Algonquin Books, 1996) p. 268

Crossrefs

Cf. A061563, A016016, A023109, A006960, A023108, A002113, A033665 (number of steps).

Programs

  • ARIBAS
    var st: stack; end; for k := 0 to 60 do n := k; while n <> int_reverse(n) do n := n + int_reverse(n); end; stack_push(st,n); end; stack2array(st);
    
  • Mathematica
    Table[NestWhile[# + FromDigits[Reverse[IntegerDigits[#]]] &, n, IntegerDigits[#] != Reverse[IntegerDigits[#]] &], {n, 0, 90}] (* Harvey P. Dale, Dec 18 2011 *)
  • PARI
    a(n)=my(k); while((k=fromdigits(Vecrev(digits(n)))) != n, n += k); n \\ infinite loop if a(n) = -1; Charles R Greathouse IV, Dec 13 2015

Extensions

More terms from Jenise Smalley (neicey01(AT)hotmail.com), Oct 18 2001

A002779 Palindromic squares.

Original entry on oeis.org

0, 1, 4, 9, 121, 484, 676, 10201, 12321, 14641, 40804, 44944, 69696, 94249, 698896, 1002001, 1234321, 4008004, 5221225, 6948496, 100020001, 102030201, 104060401, 121242121, 123454321, 125686521, 400080004, 404090404, 522808225
Offset: 1

Views

Author

Keywords

Comments

These are numbers that are both squares (see A000290) and palindromes (see A002113).

Examples

			676 is included because it is both a perfect square and a palindrome.
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a002779 n = a002778_list !! (n-1)
    a002779_list = filter ((== 1) . a136522) a000290_list
    -- Reinhard Zumkeller, Oct 11 2011
    
  • Magma
    [k^2:k in [0..100000]| Intseq(k^2) eq Reverse(Intseq(k^2)) ]; // Marius A. Burtea, Oct 15 2019
    
  • Mathematica
    palindromicNumberQ = ((# // IntegerDigits // Reverse // FromDigits) == #) &; Select[Table[n^2, {n, 0, 9999}],  palindromicNumberQ] (* Herman Beeksma, Jul 14 2005 *)
    pb10Q[n_] := Module[{idn10 = IntegerDigits[n, 10]}, idn10 == Reverse[idn10]]; Select[Range[0, 19999]^2, pb10Q] (* Vincenzo Librandi, Jul 24 2014 *)
    Select[Range[0, 22999]^2, PalindromeQ] (* Requires Mathematica version 10 or later. - Harvey P. Dale, May 01 2017 *)
  • PARI
    is(n)=my(d=digits(n)); d==Vecrev(d) && issquare(n) \\ Charles R Greathouse IV, Feb 06 2017
    
  • Python
    A002779_list = [int(s) for s in (str(m**2) for m in range(10**5)) if s == s[::-1]] # Chai Wah Wu, Aug 26 2021
  • Scala
    def isPalindromic(n: BigInt): Boolean = n.toString == n.toString.reverse
      val squares = ((1: BigInt) to (1000000: BigInt)).map(n => n * n)
      squares.filter(isPalindromic()) // _Alonso del Arte, Oct 07 2019
    

Formula

From Reinhard Zumkeller, Oct 11 2011: (Start)
a(n) = A002778(n)^2.
A136522(A000290(a(n))) = 1.
A010052(a(n)) * A136522(a(n)) = 1. (End)
Previous Showing 31-40 of 829 results. Next