cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 82 results. Next

A269557 Decimal expansion of Gamma(log(2)).

Original entry on oeis.org

1, 3, 0, 9, 0, 4, 0, 9, 1, 1, 2, 8, 1, 4, 8, 1, 2, 6, 9, 8, 2, 4, 5, 3, 2, 5, 2, 1, 3, 9, 5, 9, 2, 9, 5, 7, 5, 6, 1, 2, 5, 8, 9, 0, 3, 1, 9, 1, 8, 1, 8, 9, 0, 0, 1, 0, 3, 8, 9, 8, 0, 0, 0, 7, 9, 0, 9, 0, 9, 3, 9, 7, 6, 3, 4, 5, 6, 3, 2, 7, 4, 7, 1, 6, 0, 9, 7, 4, 1, 2, 5, 0, 3, 0, 1, 0, 0, 4, 3, 5, 1, 0, 5
Offset: 1

Views

Author

Keywords

Comments

Gamma(x) is the Gamma function (Euler's integral of the second kind).

Examples

			1.3090409112814812698245325213959295756125890319181890...
		

Crossrefs

Programs

  • MATLAB
    format long; gamma(log(2))
  • Maple
    evalf(GAMMA(ln(2)), 120);
  • Mathematica
    RealDigits[Gamma[Log[2]], 10, 120][[1]]
  • PARI
    default(realprecision, 120); gamma(log(2))
    

A269558 Decimal expansion of log(Gamma(log(2))).

Original entry on oeis.org

2, 6, 9, 2, 9, 4, 7, 4, 0, 2, 8, 3, 1, 3, 1, 2, 4, 2, 9, 4, 9, 9, 1, 6, 5, 8, 3, 2, 1, 1, 7, 1, 2, 8, 2, 4, 8, 8, 8, 9, 0, 3, 5, 1, 0, 2, 1, 1, 1, 6, 6, 1, 1, 7, 2, 8, 7, 0, 6, 1, 3, 1, 8, 9, 6, 9, 4, 8, 4, 9, 8, 7, 1, 3, 5, 9, 1, 1, 6, 0, 3, 2, 8, 0, 6, 2, 1, 6, 1, 5, 3, 6, 0, 2, 4, 6, 3, 8, 0, 9, 3, 0, 5
Offset: 0

Views

Author

Keywords

Comments

Gamma(x) is the Gamma function (Euler's integral of the second kind).

Examples

			0.2692947402831312429499165832117128248889035102111661...
		

Crossrefs

Programs

  • MATLAB
    format long; log(gamma(log(2)))
  • Maple
    evalf(lnGAMMA(ln(2)), 120);
  • Mathematica
    RealDigits[LogGamma[Log[2]], 10, 120][[1]]
  • PARI
    default(realprecision, 120); lngamma(log(2))
    

A269559 Decimal expansion of Psi(log(2)), negated.

Original entry on oeis.org

1, 2, 3, 9, 5, 9, 7, 2, 7, 9, 6, 1, 7, 6, 1, 8, 5, 0, 8, 2, 4, 4, 1, 2, 7, 5, 5, 1, 6, 8, 6, 0, 8, 4, 2, 4, 5, 4, 3, 3, 2, 8, 9, 5, 2, 2, 6, 8, 7, 4, 2, 0, 8, 6, 6, 4, 6, 1, 6, 4, 8, 9, 8, 8, 8, 1, 9, 4, 0, 6, 3, 8, 9, 3, 3, 4, 5, 3, 5, 9, 0, 1, 5, 8, 7, 3, 2, 6, 0, 6, 9, 4, 5, 7, 3, 4, 8, 8, 2, 3, 8, 2, 0
Offset: 1

Views

Author

Keywords

Comments

Psi(x) is the digamma function (logarithmic derivative of the Gamma function).

Examples

			-1.2395972796176185082441275516860842454332895226874208...
		

Crossrefs

Programs

  • MATLAB
    format long; psi(log(2))
  • Maple
    evalf(Psi(ln(2)), 120);
  • Mathematica
    RealDigits[PolyGamma[Log[2]], 10, 120][[1]]
  • PARI
    default(realprecision, 120); psi(log(2))
    

A037086 Beatty sequence for sqrt(Pi).

Original entry on oeis.org

0, 1, 3, 5, 7, 8, 10, 12, 14, 15, 17, 19, 21, 23, 24, 26, 28, 30, 31, 33, 35, 37, 38, 40, 42, 44, 46, 47, 49, 51, 53, 54, 56, 58, 60, 62, 63, 65, 67, 69, 70, 72, 74, 76, 77, 79, 81, 83, 85, 86, 88, 90, 92, 93, 95, 97, 99, 101, 102, 104, 106, 108, 109, 111, 113, 115, 116
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A002161.

Programs

Formula

a(n) = floor(n*sqrt(Pi)).

Extensions

More terms from James Sellers, Jul 06 2000

A175476 Decimal expansion of Pi^(3/2).

Original entry on oeis.org

5, 5, 6, 8, 3, 2, 7, 9, 9, 6, 8, 3, 1, 7, 0, 7, 8, 4, 5, 2, 8, 4, 8, 1, 7, 9, 8, 2, 1, 1, 8, 8, 3, 5, 7, 0, 2, 0, 1, 3, 6, 2, 4, 3, 9, 0, 2, 8, 3, 2, 4, 3, 9, 1, 0, 7, 5, 3, 6, 7, 5, 8, 1, 8, 8, 2, 9, 7, 4, 5, 5, 3, 3, 6, 4, 7, 7, 9, 5, 7, 0, 2, 2, 1, 2, 1, 7, 7, 6, 8, 7, 3, 8, 4, 7, 0, 8, 4, 9, 4, 0, 9, 7, 0, 6
Offset: 1

Views

Author

R. J. Mathar, May 25 2010

Keywords

Comments

Log(Pi^(3/2)) = 1.5*log(Pi) = 1.5 * A053510 = 1.7170948...

Examples

			5.5683279968317078452848179..
		

Crossrefs

Programs

  • Maple
    Pi^(3/2) ; evalf(%) ;
  • Mathematica
    RealDigits[Pi^(3/2), 10, 120][[1]] (* Amiram Eldar, Jun 13 2023 *)

Formula

From Vaclav Kotesovec, Dec 10 2015: (Start)
Equals Gamma(3/14)*Gamma(5/14)*Gamma(13/14)/2.
Equals Gamma(1/14)*Gamma(9/14)*Gamma(11/14)/4.
(End)
Equals Integral_{x=-oo..oo, y=-oo..oo, z=-oo..oo} exp(-x^2 - y^2 - z^2) dx dy dz. - Ilya Gutkovskiy, Apr 10 2024

A195907 Decimal expansion of Sum_{n = -oo..oo} exp(-n^2).

Original entry on oeis.org

1, 7, 7, 2, 6, 3, 7, 2, 0, 4, 8, 2, 6, 6, 5, 2, 1, 5, 3, 0, 3, 1, 2, 5, 0, 5, 5, 1, 1, 5, 7, 8, 5, 8, 4, 8, 1, 3, 4, 3, 3, 8, 6, 0, 4, 5, 3, 7, 2, 2, 4, 6, 0, 5, 3, 8, 3, 1, 5, 9, 0, 5, 1, 0, 8, 7, 9, 9, 6, 8, 6, 8, 0, 8, 3, 9, 6, 3, 4, 0, 1, 2, 5, 4, 0, 3, 3, 8, 7, 1, 7, 4, 2, 4, 9, 6, 0, 0, 2, 9, 6, 4, 0, 5, 1, 9, 0, 7, 1, 3, 4, 7, 3, 5, 1
Offset: 1

Views

Author

N. J. A. Sloane, Sep 25 2011

Keywords

Comments

A Riemann sum approximation to Integral_{-oo..oo} exp(-x^2) dx = sqrt(Pi).

Examples

			1.77263720482665215303125055115785848134338604537224605383159051...
For comparison, sqrt(Pi) = 1.7724538509055160272981674833411451827975494561223871282138... (A002161).
		

References

  • Mentioned by N. D. Elkies in a lecture on the Poisson summation formula in Nashville TN in May 2010.

Crossrefs

Programs

  • Mathematica
    N[Sum[Exp[-n^2], {n, -Infinity, Infinity}], 200]
    RealDigits[ N[ EllipticTheta[3, 0, 1/E], 115]][[1]] (* Jean-François Alcover, Nov 08 2012 *)
  • PARI
    1 + 2*suminf(n=1,exp(-n^2)) \\ Charles R Greathouse IV, Jun 06 2016
    
  • PARI
    (eta(I/Pi))^5 / (eta(I/(2*Pi))^2 * eta(2*I/Pi)^2) \\ Jianing Song, Oct 13 2021

Formula

Equals Jacobi theta_{3}(0,exp(-1)). - Jianing Song, Oct 13 2021
Equals eta(i/Pi)^5 / (eta(i/(2*Pi))*eta(2*i/Pi))^2, where eta(t) = 1 - q - q^2 + q^5 + q^7 - q^12 - q^15 + ... is the Dedekind eta function without the q^(1/24) factor in powers of q = exp(2*Pi*i*t) (Cf. A000122). - Jianing Song, Oct 14 2021
Equals Product_{k>=1} tanh((k*(1 + i*Pi))/2), i=sqrt(-1). - Antonio Graciá Llorente, May 13 2024

A217481 Decimal expansion of sqrt(2*Pi)/4.

Original entry on oeis.org

6, 2, 6, 6, 5, 7, 0, 6, 8, 6, 5, 7, 7, 5, 0, 1, 2, 5, 6, 0, 3, 9, 4, 1, 3, 2, 1, 2, 0, 2, 7, 6, 1, 3, 1, 3, 2, 5, 1, 7, 4, 6, 6, 8, 5, 1, 5, 2, 4, 8, 4, 5, 7, 9, 1, 5, 7, 4, 8, 0, 8, 9, 4, 0, 8, 5, 5, 7, 3, 4, 1, 3, 6, 5, 1, 9, 6, 0, 4, 9, 3, 7, 3, 6, 6, 4, 8, 9, 5, 9, 5, 9, 4, 5, 1, 4, 3, 1, 6, 5, 2, 9, 0, 0, 2
Offset: 0

Views

Author

R. J. Mathar, Oct 04 2012

Keywords

Comments

Equals Integral_{x>=0} sin(x^2) dx.
The generalizations are Integral_{x>=0} exp(i*x^n) dx =
0.6266570686577501... + i*0.6266570686577501... for n=2,
0.7733429420779898... + i*0.4464897557846246... for n=3,
0.8374066967690864... + i*0.3468652110238094... for n=4,
0.8732303655178185... + i*0.2837297451053993... for n=5,
and
Gamma(1/n)*i^(1/n)/n in general, where i is the imaginary unit. - R. J. Mathar, Nov 14 2012
Mean of cycle length (and of tail length) in Pollard rho method for factoring n is sqrt(2*Pi)/4*sqrt(n). - Jean-François Alcover, May 27 2013
If m = (1/2) * sqrt(Pi/2), then the coordinates of the two asymptotic points of the Cornu spiral (also called clothoide) and whose Cartesian parametrization is: x = a * Integral_{0..t} cos(u^2) du and y = a * Integral_{0..t} sin(u^2) du are (a*m, a*m) and (-a*m, -a*m) (see the curve at the MathCurve link). - Bernard Schott, Mar 02 2020
Equals the limit as x approaches infinity of the Fresnel integrals Integral_{0..x} sin(t^2) dt and Integral_{0..x} cos(t^2) dt. - Bernard Schott, Mar 05 2020

Examples

			equals 0.62665706865775012560394132120276131... = A019727 / 4 = sqrt(A019675).
		

Crossrefs

Apart from possible scaling sqrt(A019692/2^n) for n=0..7 are A019727, A002161, A069998, A019704, this sequence, A019706, A143149, A019710.

Programs

  • Magma
    Sqrt(2*Pi(RealField(100)))/4; // G. C. Greubel, Sep 30 2018
  • Maple
    evalf(sqrt(2*Pi))/4 ;
  • Mathematica
    First@ RealDigits[N[Sqrt[2 Pi]/4, 105]] (* Michael De Vlieger, Sep 24 2018 *)
  • Maxima
    fpprec : 100; ev(bfloat(sqrt(2*%pi)))/4; /* Martin Ettl, Oct 04 2012 */
    
  • PARI
    sqrt(2*Pi)/4 \\ Altug Alkan, Sep 08 2018
    
  • Sage
    ((sqrt(2*pi))/4).n(digits=100) # Jani Melik, Oct 05 2012
    

Formula

From A.H.M. Smeets, Sep 22 2018: (Start)
Equals Integral_{x >= 0} sin(4x)/sqrt(x) dx [see Gradsteyn and Ryzhik].
Equals Integral_{x >= 0} cos(4x)/sqrt(x) dx [see Gradsteyn and Ryzhik]. (End)
From Bernard Schott, Mar 02 2020: (Start)
Equals Integral_{x >= 0} cos(x^2) dx or Integral_{x >= 0} sin(x^2) dx.
Equals sqrt(Pi/8) or (1/2)*sqrt(Pi/2). (End)

A249521 Decimal expansion of 4/sqrt(Pi), the average distance between two random Gaussian points in three dimensions.

Original entry on oeis.org

2, 2, 5, 6, 7, 5, 8, 3, 3, 4, 1, 9, 1, 0, 2, 5, 1, 4, 7, 7, 9, 2, 3, 1, 7, 8, 0, 6, 2, 4, 3, 0, 9, 0, 3, 4, 3, 3, 7, 6, 2, 0, 2, 5, 1, 7, 3, 1, 5, 9, 9, 5, 4, 2, 7, 3, 7, 6, 3, 4, 2, 8, 8, 6, 8, 4, 2, 5, 6, 9, 8, 7, 3, 7, 6, 5, 9, 7, 3, 6, 5, 7, 9, 4, 6, 9, 7, 4, 6, 4, 0, 8, 0, 8, 4, 2, 9, 4, 5, 3, 7, 7, 2
Offset: 1

Views

Author

Jean-François Alcover, Oct 31 2014

Keywords

Comments

Coordinates are independent normally distributed random variables with mean 0 and variance 1.

Examples

			2.25675833419102514779231780624309034337620251731...
		

Crossrefs

Cf. A002161 (the analog constant in two dimensions), A087197, A190732 (the analog constant in one dimension).

Programs

  • Mathematica
    RealDigits[4/Sqrt[Pi], 10, 103] // First
  • PARI
    4/sqrt(Pi) \\ G. C. Greubel, Jan 09 2017

Formula

Equals Sum_{k>=0} k!/(k+3/2)!. - Amiram Eldar, Jun 19 2023

A019710 Decimal expansion of sqrt(Pi)/8.

Original entry on oeis.org

2, 2, 1, 5, 5, 6, 7, 3, 1, 3, 6, 3, 1, 8, 9, 5, 0, 3, 4, 1, 2, 2, 7, 0, 9, 3, 5, 4, 1, 7, 6, 4, 3, 1, 4, 7, 8, 4, 9, 6, 9, 3, 6, 8, 2, 0, 1, 5, 2, 9, 8, 3, 9, 1, 0, 2, 6, 7, 2, 5, 9, 7, 3, 7, 3, 1, 6, 1, 3, 9, 1, 0, 5, 7, 3, 8, 7, 9, 0, 2, 2, 6, 7, 1, 8, 6, 8, 8, 3, 2, 0, 9, 2, 3, 1, 8, 0, 8, 3
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A002161.

Programs

Formula

Equals 10 * Sum_{k>=1} (k+1/2)!/(k+4)!. - Amiram Eldar, Jun 19 2023

A068450 Factorial expansion of sqrt(Pi) = Sum_{n>0} a(n)/n!.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 1, 1, 3, 0, 5, 10, 6, 8, 12, 0, 10, 0, 12, 9, 6, 12, 22, 21, 24, 3, 14, 21, 13, 24, 21, 11, 8, 22, 27, 3, 8, 1, 36, 21, 27, 15, 2, 41, 22, 34, 8, 0, 4, 8, 39, 48, 27, 38, 22, 0, 23, 49, 19, 27, 29, 28, 40, 33, 21, 62, 7, 67, 33, 8, 30, 18, 60, 73, 61, 72, 42, 59, 22
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Examples

			sqrt(Pi) = 1 + 1/2! + 1/3! + 2/4! + 2/5! + 4/6! + 1/7! + ...
		

Crossrefs

Cf. A075874, A002161 (decimal expansion).

Programs

  • Magma
    SetDefaultRealField(RealField(250));  R:= RealField(); [Floor(Sqrt(Pi(R)))] cat [Floor(Factorial(n)*Sqrt(Pi(R))) - n*Floor(Factorial((n-1))*Sqrt(Pi(R))) : n in [2..30]]; // G. C. Greubel, Mar 21 2018
    
  • Mathematica
    Table[If[n == 1, Floor[Sqrt[Pi]], Floor[n!*Sqrt[Pi]] - n*Floor[(n - 1)!*Sqrt[Pi]]], {n, 1, 50}] (* G. C. Greubel, Mar 21 2018 *)
  • PARI
    default(realprecision, 250); for(n=1,30, print1(if(n==1, floor(sqrt(Pi)), floor(n!*sqrt(Pi)) - n*floor((n-1)!*sqrt(Pi))), ", ")) \\ G. C. Greubel, Mar 21 2018
    
  • PARI
    vector(30,n,if(n>1,t=t%1*n,t=sqrt(Pi))\1) \\ M. F. Hasler, Nov 25 2018
    
  • Sage
    def A068450(n):
        if (n==1): return floor(sqrt(pi))
        else: return expand(floor(factorial(n)*sqrt(pi)) - n*floor(factorial(n-1)*sqrt(pi)))
    [A068450(n) for n in (1..80)] # G. C. Greubel, Nov 27 2018

Extensions

Keyword cons removed by R. J. Mathar, Jul 23 2009
Previous Showing 21-30 of 82 results. Next