cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 216 results. Next

A165952 Decimal expansion of 2*sqrt(3)/(3*Pi).

Original entry on oeis.org

3, 6, 7, 5, 5, 2, 5, 9, 6, 9, 4, 7, 8, 6, 1, 3, 6, 6, 3, 4, 0, 8, 8, 4, 3, 3, 2, 2, 0, 8, 6, 4, 6, 2, 9, 4, 2, 6, 4, 9, 2, 4, 3, 2, 0, 2, 4, 4, 4, 2, 7, 1, 0, 1, 8, 6, 6, 2, 4, 4, 0, 1, 3, 5, 2, 7, 3, 5, 3, 5, 3, 5, 6, 4, 6, 1, 7, 9, 8, 6, 3, 2, 2, 6, 9, 2, 0, 0, 1, 9, 2, 1, 5, 4, 4, 7, 2, 5, 9, 4, 7, 1, 7, 9, 8
Offset: 0

Views

Author

Rick L. Shepherd, Oct 02 2009

Keywords

Comments

The ratio of the volume of a cube to the volume of the circumscribed sphere (which has circumradius a*sqrt(3)/2 = a*A010527, where a is the cube's edge length; see MathWorld link). For similar ratios for other Platonic solids, see A165922, A049541, A165953, and A165954. A063723 shows the order of these by size.

Examples

			0.3675525969478613663408843322086462942649243202444271018662440135273535356...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(2*Sqrt[3])/(3Pi),10,120][[1]] (* Harvey P. Dale, Oct 08 2012 *)
  • PARI
    2*sqrt(3)/(3*Pi)

Formula

2*sqrt(3)/(3*Pi) = 2*A002194/(3*A000796) = 3*A165922 = (2*sqrt(3)/3)*A049541 = 10*A020832*A049541 = 2*A020760*A049541.

A272534 Decimal expansion of the edge length of a regular 15-gon with unit circumradius.

Original entry on oeis.org

4, 1, 5, 8, 2, 3, 3, 8, 1, 6, 3, 5, 5, 1, 8, 6, 7, 4, 2, 0, 3, 4, 8, 4, 5, 6, 8, 8, 1, 0, 2, 5, 0, 3, 3, 2, 4, 3, 3, 1, 6, 9, 5, 2, 1, 2, 5, 5, 4, 4, 7, 6, 7, 2, 8, 1, 4, 3, 6, 3, 9, 4, 7, 7, 6, 4, 7, 6, 5, 6, 5, 1, 3, 2, 8, 1, 4, 8, 7, 5, 2, 6, 0, 9, 2, 5, 7, 5, 1, 3, 4, 4, 5, 4, 5, 5, 1, 4, 6, 1, 1, 5, 7, 3, 0
Offset: 0

Views

Author

Stanislav Sykora, May 02 2016

Keywords

Comments

15-gon is the first m-gon with odd composite m which is constructible (see A003401) in virtue of the fact that 15 is the product of two distinct Fermat primes (A019434). The next such case is 51-gon (m=3*17), followed by 85-gon (m=5*17), 771-gon (m=3*257), etc.
From Wolfdieter Lang, Apr 29 2018: (Start)
This constant appears in a historic problem posed by Adriaan van Roomen (Adrianus Romanus) in his Ideae mathematicae from 1593, solved by Viète. See the Havil reference, problem 4, pp. 69-74. See also the comments in A302711 with a link to Romanus' book, Exemplum quaesitum.
This problem is equivalent to R(45, 2*sin(Pi/675)) = 2*sin(Pi/15), with a special case of monic Chebyshev polynomials of the first kind, named R, given in A127672. For the constant 2*sin(Pi/675) see A302716. (End)

Examples

			0.415823381635518674203484568810250332433169521255447672814363947...
		

References

  • Julian Havil, The Irrationals, A Story of the Numbers You Can't Count On, Princeton University Press, Princeton and Oxford, 2012, pp. 69-74.

Crossrefs

Edge lengths of other constructible m-gons: A002194 (m=3), A002193 (4), A182007 (5), A101464 (8), A094214 (10), A101263 (12), A272535 (16), A228787 (17), A272536 (20).

Programs

  • Mathematica
    RealDigits[N[2Sin[Pi/15], 100]][[1]] (* Robert Price, May 02 2016*)
  • PARI
    2*sin(Pi/15)

Formula

Equals 2*sin(Pi/m) for m=15, 2*A019821.
Also equals (sqrt(3) - sqrt(15) + sqrt(10 + 2*sqrt(5)))/4.
Also equals sqrt(7 - sqrt(5) - sqrt(30 - 6*sqrt(5)))/2. This is the rewritten expression of the Havil reference on top of p. 70. - Wolfdieter Lang, Apr 29 2018

A377602 Decimal expansion of the surface area of a snub cube (snub cuboctahedron) with unit edge length.

Original entry on oeis.org

1, 9, 8, 5, 6, 4, 0, 6, 4, 6, 0, 5, 5, 1, 0, 1, 8, 3, 4, 8, 2, 1, 9, 5, 7, 0, 7, 3, 2, 0, 4, 6, 9, 7, 8, 9, 3, 5, 5, 4, 2, 4, 4, 2, 0, 3, 0, 4, 8, 3, 0, 4, 5, 0, 2, 4, 4, 4, 6, 4, 5, 5, 8, 3, 5, 6, 1, 5, 4, 6, 4, 1, 3, 5, 2, 7, 0, 4, 0, 0, 2, 9, 6, 6, 4, 9, 1, 6, 9, 4
Offset: 2

Views

Author

Paolo Xausa, Nov 02 2024

Keywords

Examples

			19.856406460551018348219570732046978935542442030...
		

Crossrefs

Cf. A377603 (volume), A377604 (circumradius), A377605 (midradius).

Programs

  • Mathematica
    First[RealDigits[6 + Sqrt[192], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["SnubCube", "SurfaceArea"], 10, 100]]

Formula

Equals 6 + 8*sqrt(3) = 6 + 8*A002194 = 6 + A200243.

A377804 Decimal expansion of the surface area of a snub dodecahedron with unit edge length.

Original entry on oeis.org

5, 5, 2, 8, 6, 7, 4, 4, 9, 5, 8, 4, 4, 5, 1, 4, 8, 9, 4, 3, 6, 5, 7, 0, 7, 0, 5, 5, 8, 7, 8, 0, 7, 6, 2, 5, 3, 1, 7, 4, 4, 5, 9, 5, 1, 1, 6, 3, 2, 9, 9, 9, 2, 5, 1, 1, 6, 0, 1, 2, 7, 6, 0, 7, 3, 3, 2, 5, 0, 8, 8, 2, 4, 4, 6, 8, 3, 5, 9, 5, 5, 1, 7, 6, 1, 2, 2, 1, 8, 6
Offset: 2

Views

Author

Paolo Xausa, Nov 08 2024

Keywords

Examples

			55.2867449584451489436570705587807625317445951163...
		

Crossrefs

Cf. A377805 (volume), A377806 (circumradius), A377807 (midradius).
Cf. A131595 (analogous for a regular dodecahedron).
Cf. A002194.

Programs

  • Mathematica
    First[RealDigits[20*Sqrt[3] + 3*Sqrt[25 + 10*Sqrt[5]], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["SnubDodecahedron", "SurfaceArea"], 10, 100]]

Formula

Equals 20*sqrt(3) + 3*sqrt(25 + 10*sqrt(5)) = 20*A002194 + A131595.

A384215 Decimal expansion of the surface area of a gyroelongated square cupola with unit edge.

Original entry on oeis.org

1, 8, 4, 8, 8, 6, 8, 1, 1, 6, 2, 5, 9, 0, 5, 7, 6, 5, 6, 5, 2, 4, 0, 6, 0, 9, 1, 5, 5, 9, 4, 8, 7, 5, 7, 9, 9, 1, 8, 5, 3, 3, 7, 0, 0, 1, 9, 8, 0, 5, 7, 9, 9, 2, 8, 6, 6, 3, 2, 3, 9, 4, 3, 7, 3, 2, 4, 1, 1, 3, 0, 0, 4, 1, 4, 6, 8, 2, 1, 4, 2, 6, 3, 1, 0, 6, 5, 0, 6, 0
Offset: 2

Views

Author

Paolo Xausa, May 23 2025

Keywords

Comments

The gyroelongated square cupola is Johnson solid J_23.

Examples

			18.4886811625905765652406091559487579918533700198...
		

Crossrefs

Cf. A384214 (volume).

Programs

  • Mathematica
    First[RealDigits[7 + Sqrt[8] + Sqrt[75], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J23", "SurfaceArea"], 10, 100]]

Formula

Equals 7 + 2*sqrt(2) + 5*sqrt(3) = 7 + A010466 + 5*A002194.
Equals the largest root of x^4 - 28*x^3 + 128*x^2 + 952*x - 1244.

A010538 Decimal expansion of square root of 87.

Original entry on oeis.org

9, 3, 2, 7, 3, 7, 9, 0, 5, 3, 0, 8, 8, 8, 1, 5, 0, 4, 5, 5, 5, 4, 4, 7, 5, 5, 4, 2, 3, 2, 0, 5, 5, 6, 9, 8, 3, 2, 7, 6, 2, 4, 0, 6, 9, 4, 1, 9, 1, 6, 5, 4, 6, 7, 1, 0, 5, 6, 1, 9, 7, 2, 9, 8, 4, 4, 6, 7, 8, 4, 5, 4, 8, 8, 0, 7, 2, 4, 9, 6, 7, 8, 4, 1, 4, 2, 2, 0, 5, 6, 2, 9, 1, 1, 8, 8, 2, 0, 1
Offset: 1

Views

Author

Keywords

Comments

Continued fraction expansion is 9 followed by {3, 18} repeated. - Harry J. Smith, Jun 10 2009

Examples

			9.3273790530888150455544755423205569832762406...
		

Crossrefs

Cf. A040077 (continued fraction).

Programs

Formula

Equals A002194 * A010484. - R. J. Mathar, Jun 08 2020

A119343 Theodorus primes: primes formed from the concatenation of the initial decimal digits of Theodorus's constant, sqrt(3).

Original entry on oeis.org

17, 173, 1732050807568877293
Offset: 1

Views

Author

Eric W. Weisstein, May 15 2006

Keywords

Comments

The next term (a(4)) has 111 digits. - Harvey P. Dale, Oct 24 2014

Examples

			sqrt(3) = 1.732050807568877..., 17, the concatenation of the first 2 decimal digits, is prime, so a(1) = 17.
		

Crossrefs

Programs

  • Mathematica
    nn=300;With[{ds3=RealDigits[Sqrt[3],10,nn][[1]]},Select[ Table[ FromDigits[ Take[ds3,n]],{n,nn}],PrimeQ]] (* Harvey P. Dale, Oct 24 2014 *)

Extensions

Edited by Charles R Greathouse IV, Apr 27 2010

A153594 a(n) = ((4 + sqrt(3))^n - (4 - sqrt(3))^n)/(2*sqrt(3)).

Original entry on oeis.org

1, 8, 51, 304, 1769, 10200, 58603, 336224, 1927953, 11052712, 63358307, 363181200, 2081791609, 11932977272, 68400527259, 392075513536, 2247397253921, 12882196355400, 73841406542227, 423262699717616, 2426163312691977, 13906891405206808
Offset: 1

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Dec 29 2008

Keywords

Comments

Second binomial transform of A054491. Fourth binomial transform of 1 followed by A162766 and of A074324 without initial term 1.
First differences are in A161728.
Lim_{n -> infinity} a(n)/a(n-1) = 4 + sqrt(3) = 5.73205080756887729....

Crossrefs

Cf. A002194 (decimal expansion of sqrt(3)), A054491, A074324, A161728, A162766.

Programs

  • Magma
    Z:= PolynomialRing(Integers()); N:=NumberField(x^2-3); S:=[ ((4+r)^n-(4-r)^n)/(2*r): n in [1..21] ]; [ Integers()!S[j]: j in [1..#S] ];  // Klaus Brockhaus, Dec 31 2008
    
  • Magma
    I:=[1,8]; [n le 2 select I[n] else 8*Self(n-1)-13*Self(n-2): n in [1..25]]; // Vincenzo Librandi, Aug 23 2016
    
  • Mathematica
    Join[{a=1,b=8},Table[c=8*b-13*a;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 19 2011 *)
    LinearRecurrence[{8,-13},{1,8},40] (* Harvey P. Dale, Aug 16 2012 *)
  • PARI
    a(n)=([0,1; -13,8]^(n-1)*[1;8])[1,1] \\ Charles R Greathouse IV, Sep 04 2016
  • Sage
    [lucas_number1(n,8,13) for n in range(1, 22)] # Zerinvary Lajos, Apr 23 2009
    

Formula

G.f.: x/(1 - 8*x + 13*x^2). - Klaus Brockhaus, Dec 31 2008, corrected Oct 11 2009
a(n) = 8*a(n-1) - 13*a(n-2) for n > 1; a(0)=0, a(1)=1. - Philippe Deléham, Jan 01 2009
E.g.f.: sinh(sqrt(3)*x)*exp(4*x)/sqrt(3). - Ilya Gutkovskiy, Aug 23 2016
a(n) = Sum_{k=0..n-1} A027907(n,2k+1)*3^k. - J. Conrad, Aug 30 2016
a(n) = Sum_{k=0..n-1} A083882(n-1-k)*4^k. - J. Conrad, Sep 03 2016

Extensions

Extended beyond a(7) by Klaus Brockhaus, Dec 31 2008
Edited by Klaus Brockhaus, Oct 11 2009

A196530 Decimal expansion of log(2+sqrt(3))/sqrt(3).

Original entry on oeis.org

7, 6, 0, 3, 4, 5, 9, 9, 6, 3, 0, 0, 9, 4, 6, 3, 4, 7, 5, 3, 1, 0, 9, 4, 2, 5, 4, 8, 8, 0, 4, 0, 5, 8, 2, 4, 2, 0, 1, 6, 2, 7, 7, 3, 0, 9, 4, 7, 1, 7, 6, 4, 2, 7, 0, 2, 0, 5, 7, 0, 6, 7, 0, 2, 6, 0, 0, 5, 5, 1, 2, 2, 6, 5, 4, 9, 1, 0, 7, 5, 3, 0, 2, 8, 4, 5, 8, 3, 6
Offset: 0

Views

Author

R. J. Mathar, Oct 03 2011

Keywords

Comments

Equals the value of the Dirichlet L-series of a non-principal character modulo 12 (A110161) at s=1.

Examples

			0.7603459963009463475310942548...
		

References

  • L. B. W. Jolley, Summation of series, Dover (1961), eq. (83), page 16.

Crossrefs

Programs

Formula

Equals Sum_{n>=1} A110161(n)/n.
Equals Sum_{k>=1} (-1)^(k+1)*2^k/(k * binomial(2*k,k)). - Amiram Eldar, Aug 19 2020
Equals 1/Product_{p prime} (1 - Kronecker(12,p)/p), where Kronecker(12,p) = 0 if p = 2 or 3, 1 if p == 1 or 11 (mod 12) or -1 if p == 5 or 7 (mod 12). - Amiram Eldar, Dec 17 2023
Equals A259830 - 2. - Hugo Pfoertner, Apr 06 2024
Equals (1/2)*2F1(1/2,1;3/2;3/4) [Krupnikov] - R. J. Mathar, Jun 11 2024

A240935 Decimal expansion of 3*sqrt(3)/(4*Pi).

Original entry on oeis.org

4, 1, 3, 4, 9, 6, 6, 7, 1, 5, 6, 6, 3, 4, 4, 0, 3, 7, 1, 3, 3, 4, 9, 4, 8, 7, 3, 7, 3, 4, 7, 2, 7, 0, 8, 1, 0, 4, 8, 0, 3, 9, 8, 6, 0, 2, 7, 4, 9, 8, 0, 4, 8, 9, 5, 9, 9, 5, 2, 4, 5, 1, 5, 2, 1, 8, 2, 7, 2, 7, 2, 7, 6, 0, 1, 9, 5, 2, 3, 4, 6, 1, 3, 0, 2, 8, 5, 0, 2, 1, 6, 1, 7, 3, 7, 8, 1, 6, 6, 9, 0, 5, 7, 7, 3
Offset: 0

Views

Author

Rick L. Shepherd, Aug 03 2014

Keywords

Comments

A triangle of maximal area inside a circle is necessarily an inscribed equilateral triangle. This constant is the ratio of the triangle's area to the circle's area. In general, the ratio of an arbitrary triangle's area to the area of its unique Steiner ellipse, which has the least area of any circumscribed ellipse (an equilateral triangle's Steiner ellipse is a circle).
Also the probability that the distance between 2 randomly selected points within a circle will be larger than the radius. - Amiram Eldar, Mar 03 2019

Examples

			0.4134966715663440371334948737347270810480...
		

Crossrefs

Programs

  • Maple
    Digits:=100: evalf(3*sqrt(3)/(4*Pi)); # Wesley Ivan Hurt, Aug 03 2014
  • Mathematica
    Flatten[RealDigits[3 Sqrt[3]/(4 Pi), 10, 100, -1]] (* Wesley Ivan Hurt, Aug 03 2014 *)
  • PARI
    default(realprecision, 120);
    3*sqrt(3)/(4*Pi)

Formula

3*sqrt(3)/(4*Pi) = 3*A002194/(4*A000796).
Equals A093604^2. - Hugo Pfoertner, May 18 2024
Previous Showing 41-50 of 216 results. Next