cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 53 results. Next

A133875 n modulo 5 repeated 5 times.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Hieronymus Fischer, Oct 10 2007

Keywords

Comments

Periodic with length 5^2 = 25.

Crossrefs

Programs

  • Magma
    [(1 + Floor(n/5)) mod 5 : n in [0..50]]; // Wesley Ivan Hurt, Jun 06 2014
  • Maple
    A133875:=n->((1+floor(n/5)) mod 5); seq(A133875(n), n=0..100); # Wesley Ivan Hurt, Jun 06 2014
  • Mathematica
    Table[Mod[1 + Floor[n/5], 5], {n, 0, 100}] (* Wesley Ivan Hurt, Jun 06 2014 *)
    LinearRecurrence[{1,0,0,0,-1,1,0,0,0,-1,1,0,0,0,-1,1,0,0,0,-1,1},{1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,0},120] (* Harvey P. Dale, Dec 14 2017 *)

Formula

a(n) = (1 + floor(n/5)) mod 5.
a(n) = A010874(A002266(n+5)).
a(n) = 1 + floor(n/5) - 5*floor((n+5)/25).
a(n) = (((n+5) mod 25) - (n mod 5)) / 5.
a(n) = ((n + 5 - (n mod 5)) / 5) mod 5.
a(n) = A010874((n + 5 - A010874(n))/5).
a(n) = binomial(n+5, n) mod 5 = binomial(n+5, 5) mod 5.
a(n) = +a(n-1) -a(n-5) +a(n-6) -a(n-10) +a(n-11) -a(n-15) +a(n-16) -a(n-20) +a(n-21). - R. J. Mathar, Sep 03 2011
G.f.: ( 1+2*x^5+3*x^10+4*x^15 ) / ( (1-x)*(x^20+x^15+x^10+x^5+1) ). - R. J. Mathar, Sep 03 2011

A256067 Irregular table T(n,k): the number of partitions of n where the least common multiple of all parts equals k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 2, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 0, 0, 1, 0, 1, 1, 4, 2, 4, 1, 5, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 4, 3, 4, 1, 7, 1, 1, 1, 2, 0, 2, 0, 1, 1, 0, 0, 0, 0, 1, 1, 5, 3, 6, 2, 9, 1, 2, 1, 3, 0, 4, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 5, 3, 6, 2
Offset: 0

Views

Author

R. J. Mathar, Mar 18 2015

Keywords

Examples

			The 5 partitions of n=4 are 1+1+1+1 (lcm=1), 1+1+2 (lcm=2), 2+2 (lcm=2), 1+3 (lcm=3) and 4 (lcm=4). So k=1, 3 and 4 appear once, k=2 appears twice.
The triangle starts:
  1 ;
  1 ;
  1  1;
  1  1  1;
  1  2  1  1;
  1  2  1  1  1  1;
  1  3  2  2  1  2;
  1  3  2  2  1  3  1  0  0  1  0  1;
  ...
		

Crossrefs

Cf. A000041 (row sums), A000793 (row lengths), A213952, A074761 (diagonal), A074752 (6th column), A008642 (4th column), A002266 (5th column), A002264 (3rd column), A132270 (7th column), A008643 (8th column), A008649 (9th column), A258470 (10th column).
Cf. A009490 (number of nonzero terms of rows), A074064 (last elements of rows), A168532 (the same for gcd), A181844 (Sum k*T(n,k)).

Programs

  • Maple
    A256067 := proc(n,k)
            local a,p ;
            a := 0 ;
            for p in combinat[partition](n) do
                    ilcm(op(p)) ;
                    if % = k then
                            a := a+1 ;
                    end if;
            end do:
            a;
    end proc:
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0 or i=1, x,
          b(n, i-1)+(p-> add(coeff(p, x, t)*x^ilcm(t, i),
          t=1..degree(p)))(add(b(n-i*j, i-1), j=1..n/i)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n$2)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Mar 27 2015
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0 || i == 1, x, b[n, i-1] + Function[{p}, Sum[ Coefficient[p, x, t]*x^LCM[t, i], {t, 1, Exponent[p, x]}]][Sum[b[n-i*j, i-1], {j, 1, n/i}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 1, Exponent[p, x]}]][b[n, n]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jun 22 2015, after Alois P. Heinz *)

Extensions

T(0,1)=1 prepended by Alois P. Heinz, Mar 27 2015

A010883 Simple periodic sequence: repeat 1,2,3,4.

Original entry on oeis.org

1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1
Offset: 0

Views

Author

Keywords

Comments

Partial sums are given by A130482(n) + n + 1. - Hieronymus Fischer, Jun 08 2007
1234/9999 = 0.123412341234... - Eric Desbiaux, Nov 03 2008

Crossrefs

Cf. A177037 (decimal expansion of (9+2*sqrt(39))/15). - Klaus Brockhaus, May 01 2010

Programs

Formula

a(n) = 1 + (n mod 4). - Paolo P. Lava, Nov 21 2006
From Hieronymus Fischer, Jun 08 2007: (Start)
a(n) = A010873(n) + 1.
Also a(n) = (1/2)*(5 - (-1)^n - 2*(-1)^((2*n - 1 + (-1)^n)/4)).
G.f.: g(x) = (4*x^3 + 3*x^2 + 2*x + 1)/(1 - x^4) = (4*x^5 - 5*x^4 + 1)/((1 - x^4)*(1-x)^2). (End)
a(n) = 5/2 - cos(Pi*n/2) - sin(Pi*n/2) - (-1)^n/2. - R. J. Mathar, Oct 08 2011

A132292 Integers repeated 8 times: a(n) = floor((n-1)/8).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10
Offset: 1

Views

Author

Mohammad K. Azarian, Nov 06 2007

Keywords

Comments

Also floor((n^8-1)/(8*n^7)).

Crossrefs

Programs

Formula

Also, a(n) = floor((n^8-n^7)/(8n^7-7n^6)). - Mohammad K. Azarian, Nov 18 2007
a(n) = A180969(3,n).
a(n) = (r - 8 + 4*sin(r*Pi/8))/16 where r = 2*n - 1 - 2*cos(n*Pi/2) - cos(n*Pi) + 2*sin(n*Pi/2). - Wesley Ivan Hurt, Oct 04 2018

Extensions

Offset corrected by Mohammad K. Azarian, Nov 20 2008
New name from Wesley Ivan Hurt, Jun 17 2013

A090223 Nonnegative integers with doubled multiples of 4.

Original entry on oeis.org

0, 0, 1, 2, 3, 4, 4, 5, 6, 7, 8, 8, 9, 10, 11, 12, 12, 13, 14, 15, 16, 16, 17, 18, 19, 20, 20, 21, 22, 23, 24, 24, 25, 26, 27, 28, 28, 29, 30, 31, 32, 32, 33, 34, 35, 36, 36, 37, 38, 39, 40, 40, 41, 42, 43, 44, 44, 45, 46, 47, 48, 48, 49, 50, 51, 52, 52, 53, 54, 55, 56, 56, 57, 58
Offset: 0

Views

Author

Wolfdieter Lang, Dec 01 2003

Keywords

Comments

Degrees of row-polynomials of array A090222.
a(n) is the number of full orbits completed by body A for n full orbits completed by body B in a celestial system with two orbiting bodies A and B with orbital resonance A:B equal to 4:5. This resonance is exhibited by the planets Kepler-90b and Kepler-90c in the planetary system of the star Kepler-90. - Felix Fröhlich, May 03 2021

Crossrefs

Cf. A057353 and other floors of ratios references there.
Cf. A090222.

Programs

Formula

a(n) = floor(4*n/5).
G.f.: x^2 *(1+x^2)*(1+x)/((1-x^5)*(1-x)) = (x^2)*(1-x^4)/((1-x^5)*(1-x)^2).
a(n) = n - 1 - A002266(n - 1). - Wesley Ivan Hurt, Nov 15 2013
a(n) = A057354(2*n). - R. J. Mathar, Jul 21 2020
5*a(n) = 4*n-2+A117444(n+2) . - R. J. Mathar, Jul 21 2020
Sum_{n>=2} (-1)^n/a(n) = (2*sqrt(2)-1)*Pi/8. - Amiram Eldar, Sep 30 2022

A110532 a(n) = floor(n/2) + floor(n/5).

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 4, 4, 5, 5, 7, 7, 8, 8, 9, 10, 11, 11, 12, 12, 14, 14, 15, 15, 16, 17, 18, 18, 19, 19, 21, 21, 22, 22, 23, 24, 25, 25, 26, 26, 28, 28, 29, 29, 30, 31, 32, 32, 33, 33, 35, 35, 36, 36, 37, 38, 39, 39, 40, 40, 42, 42, 43, 43, 44, 45, 46, 46, 47, 47, 49, 49, 50, 50
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 25 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Floor[n/2]+Floor[n/5],{n,0,80}] (* or *) LinearRecurrence[ {0,1,0,0,1,0,-1},{0,0,1,1,2,3,4},80] (* Harvey P. Dale, Dec 26 2015 *)
  • PARI
    a(n)=n\2 + n\5 \\ Charles R Greathouse IV, Jun 11 2015

Formula

a(n) = A004526(n) + A002266(n).
G.f.: x^2*(1+x+x^2+2*x^3+2*x^4) / ( (1+x)*(x^4+x^3+x^2+x+1)*(x-1)^2 ). - R. J. Mathar, Feb 20 2011
a(n) = 7n/10 + O(1). - Charles R Greathouse IV, Jun 11 2015

A110533 a(n) = floor(n/2) * floor(n/5).

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 3, 3, 4, 4, 10, 10, 12, 12, 14, 21, 24, 24, 27, 27, 40, 40, 44, 44, 48, 60, 65, 65, 70, 70, 90, 90, 96, 96, 102, 119, 126, 126, 133, 133, 160, 160, 168, 168, 176, 198, 207, 207, 216, 216, 250, 250, 260, 260, 270, 297, 308, 308, 319, 319, 360, 360, 372
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 25 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Floor[n/2]*Floor[n/5], {n, 0, 50}] (* G. C. Greubel, Aug 30 2017 *)
  • PARI
    for(n=0,50, print1(floor(n/2)*floor(n/5), ", ")) \\ G. C. Greubel, Aug 30 2017

Formula

a(n) = A004526(n)*A002266(n).
From R. J. Mathar, Feb 20 2011: (Start)
a(n) = +a(n-2) +a(n-5) -a(n-7) +a(n-10) -a(n-12) -a(n-15) +a(n-17).
G.f.: -x^5*(2+3*x+x^2+x^3+x^4+4*x^5+3*x^6+x^7+x^8+x^9+x^10+x^11) / ( (x^4-x^3+x^2-x+1) *(1+x)^2 *(x^4+x^3+x^2+x+1)^2 *(x-1)^3 ). (End)
Sum_{n>=5} (-1)^(n+1)/a(n) = sqrt(5*(5-2*sqrt(5)))*Pi/8 - (5/8)*(1 + sqrt(5)*log(phi)) + (25/16)*log(5) - 2*log(2), where phi is the golden ratio (A001622). - Amiram Eldar, Mar 30 2023

A256554 Number T(n,k) of cycle types of degree-n permutations having the k-th smallest possible order; triangle T(n,k), n>=0, 1<=k<=A009490(n), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 2, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 1, 1, 1, 4, 2, 4, 1, 5, 1, 1, 1, 1, 1, 1, 4, 3, 4, 1, 7, 1, 1, 1, 2, 2, 1, 1, 1, 1, 5, 3, 6, 2, 9, 1, 2, 1, 3, 4, 1, 1, 1, 1, 1, 1, 5, 3, 6, 2, 12, 1, 2, 1, 4, 1, 6, 2, 2, 1, 2, 1, 1, 1, 2
Offset: 0

Views

Author

Alois P. Heinz, Apr 01 2015

Keywords

Comments

Sum_{k>=0} A256553(n,k)*T(n,k) = A181844(n).

Examples

			Triangle T(n,k) begins:
  1;
  1;
  1, 1;
  1, 1, 1;
  1, 2, 1, 1;
  1, 2, 1, 1, 1, 1;
  1, 3, 2, 2, 1, 2;
  1, 3, 2, 2, 1, 3, 1, 1, 1;
  1, 4, 2, 4, 1, 5, 1, 1, 1, 1, 1;
  1, 4, 3, 4, 1, 7, 1, 1, 1, 2, 2, 1, 1, 1;
  1, 5, 3, 6, 2, 9, 1, 2, 1, 3, 4, 1, 1, 1, 1, 1;
		

Crossrefs

Row sums give A000041.
Row lengths give A009490.
Columns k=1-9 give: A000012, A004526, A002264, A008642(n-4), A002266, A074752, A132270, A008643(n-8) for n>7, A008649(n-9) for n>8.
Last elements of rows give A074064.
Main diagonal gives A074761.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, x,
          b(n, i-1)+(p-> add(coeff(p, x, t)*x^ilcm(t, i),
          t=1..degree(p)))(add(b(n-i*j, i-1), j=1..n/i)))
        end:
    T:= n->(p->seq((h->`if`(h=0, [][], h))(coeff(p, x, i))
         , i=1..degree(p)))(b(n$2)):
    seq(T(n), n=0..12);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0 || i == 1, x, b[n, i - 1] + Function[p, Sum[Coefficient[p, x, t]*x^LCM[t, i], {t, 1, Exponent[p, x]}]][Sum[b[n - i*j, i - 1], {j, 1, n/i}]]]; T[n_] := Function[p, Table[Function[h, If[h == 0, {{}, {}}, h]][Coefficient[p, x, i]], {i, 1, Exponent[p, x]}]][b[n, n]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 23 2017, translated from Maple *)

A356858 a(n) is the product of the first n numbers not divisible by 5.

Original entry on oeis.org

1, 1, 2, 6, 24, 144, 1008, 8064, 72576, 798336, 9580032, 124540416, 1743565824, 27897053184, 474249904128, 8536498274304, 162193467211776, 3406062811447296, 74933381851840512, 1723467782592331776, 41363226782215962624, 1075443896337615028224, 29036985201115605762048
Offset: 0

Views

Author

Stefano Spezia, Sep 01 2022

Keywords

Comments

Unlike the factorial number n!, a(n) does not have trailing zeros.

Crossrefs

Cf. A356859 (number of zero digits), A356860 (number of digits), A356861 (number of nonzero digits).

Programs

  • Mathematica
    Table[Product[Floor[(5k-1)/4], {k,n}], {n,0,22}] (* or *)
    Join[{1}, Table[Floor[(5n-1)/4]!/(Floor[Floor[(5n-1)/4]/5]!*5^Floor[Floor[(5n-1)/4]/5]), {n,22}]]
    Join[{1},FoldList[Times,Table[If[Mod[n,5]==0,Nothing,n],{n,30}]]] (* Harvey P. Dale, Nov 03 2024 *)
  • Python
    from math import prod
    def a(n): return prod((5*k-1)//4 for k in range(1, n+1))
    print([a(n) for n in range(23)]) # Michael S. Branicky, Sep 01 2022

Formula

a(n) = Product_{k=1..n} A047201(k).
a(n) = A047201(n)!/(floor(A047201(n)/5)!*5^floor(A047201(n)/5)) for n > 0.

A010887 Simple periodic sequence: repeat 1,2,3,4,5,6,7,8.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1
Offset: 0

Views

Author

Keywords

Comments

Partial sums are given by A130486(n)+n+1. - Hieronymus Fischer, Jun 08 2007
1371742/11111111 = 0.123456781234567812345678... - Eric Desbiaux, Nov 03 2008

Crossrefs

Cf. A177034 (decimal expansion of (9280+3*sqrt(13493990))/14165). - Klaus Brockhaus, May 01 2010

Programs

  • Haskell
    a010887 = (+ 1) . flip mod 8
    a010887_list = cycle [1..8]
    -- Reinhard Zumkeller, Nov 09 2014, Mar 04 2014
    
  • Mathematica
    PadRight[{},90,Range[8]] (* Harvey P. Dale, May 10 2022 *)
  • Python
    def A010887(n): return 1 + (n & 7) # Chai Wah Wu, May 25 2022

Formula

a(n) = 1 + (n mod 8) - Paolo P. Lava, Nov 21 2006
From Hieronymus Fischer, Jun 08 2007: (Start)
a(n) = (1/2)*(9 - (-1)^n - 2*(-1)^(b/4) - 4*(-1)^((b - 2 + 2*(-1)^(b/4))/8)) where b = 2n - 1 + (-1)^n.
Also a(n) = A010877(n) + 1.
G.f.: g(x) = (1/(1-x^8))*Sum_{k=0..7} (k+1)*x^k.
Also: g(x) = (8x^9 - 9x^8 + 1)/((1-x^8)*(1-x)^2). (End)
Previous Showing 21-30 of 53 results. Next