A264774
Triangle T(n,k) = binomial(5*n - 4*k, 4*n - 3*k), 0 <= k <= n.
Original entry on oeis.org
1, 5, 1, 45, 6, 1, 455, 55, 7, 1, 4845, 560, 66, 8, 1, 53130, 5985, 680, 78, 9, 1, 593775, 65780, 7315, 816, 91, 10, 1, 6724520, 736281, 80730, 8855, 969, 105, 11, 1, 76904685, 8347680, 906192, 98280, 10626, 1140, 120, 12, 1, 886163135, 95548245, 10295472, 1107568, 118755, 12650, 1330, 136, 13, 1
Offset: 0
Triangle begins
n\k | 0 1 2 3 4 5 6 7
------+---------------------------------------------
0 | 1
1 | 5 1
2 | 45 6 1
3 | 455 55 7 1
4 | 4845 560 66 8 1
5 | 53130 5985 680 78 9 1
6 | 593775 65780 7315 816 91 10 1
7 | 6724520 736281 80730 8855 969 105 11 1
...
- Peter Bala, A 4-parameter family of embedded Riordan arrays
- E. Lebensztayn, On the asymptotic enumeration of accessible automata, Section 2, Discrete Mathematics and Theoretical Computer Science, Vol. 12, No. 3, 2010, 75-80, Section 2.
- R. Sprugnoli, An Introduction to Mathematical Methods in Combinatorics, CreateSpace Independent Publishing Platform 2006, Section 5.6, ISBN-13: 978-1502925244.
-
/* As triangle */ [[Binomial(5*n-4*k, 4*n-3*k): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Dec 02 2015
-
A264774:= proc(n,k) binomial(5*n - 4*k, 4*n - 3*k); end proc:
seq(seq(A264774(n,k), k = 0..n), n = 0..10);
-
Table[Binomial[5 n - 4 k, 4 n - 3 k], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 01 2015 *)
A324958
Triangle of coefficients T(n,k) of y^n in Product_{k=0..n-2} (n + (2*n + k)*y + n*y^2), as read by rows of terms k = 0..2*n-2, for n >= 1.
Original entry on oeis.org
1, 2, 4, 2, 9, 39, 60, 39, 9, 64, 432, 1160, 1584, 1160, 432, 64, 625, 5750, 22275, 47380, 60460, 47380, 22275, 5750, 625, 7776, 90720, 461160, 1343160, 2479464, 3029040, 2479464, 1343160, 461160, 90720, 7776, 117649, 1663893, 10489969, 38937360, 94679711, 158760987, 188149822, 158760987, 94679711, 38937360, 10489969, 1663893, 117649, 2097152, 34865152, 262635520, 1187049472, 3593318400, 7701010688, 12043471488, 13957194496, 12043471488, 7701010688, 3593318400, 1187049472, 262635520, 34865152, 2097152
Offset: 1
E.g.f.: A(x,y) = Sum_{n>=0} x^n/n! * Sum_{k=0..2*n-2} T(n,k)*y^k starts
A(x,y) = x + (2*y^2 + 4*y + 2)*x^2/2! + (9*y^4 + 39*y^3 + 60*y^2 + 39*y + 9)*x^3/3! + (64*y^6 + 432*y^5 + 1160*y^4 + 1584*y^3 + 1160*y^2 + 432*y + 64)*x^4/4! + (625*y^8 + 5750*y^7 + 22275*y^6 + 47380*y^5 + 60460*y^4 + 47380*y^3 + 22275*y^2 + 5750*y + 625)*x^5/5! + (7776*y^10 + 90720*y^9 + 461160*y^8 + 1343160*y^7 + 2479464*y^6 + 3029040*y^5 + 2479464*y^4 + 1343160*y^3 + 461160*y^2 + 90720*y + 7776)*x^6/6! + (117649*y^12 + 1663893*y^11 + 10489969*y^10 + 38937360*y^9 + 94679711*y^8 + 158760987*y^7 + 188149822*y^6 + 158760987*y^5 + 94679711*y^4 + 38937360*y^3 + 10489969*y^2 + 1663893*y + 117649)*x^7/7! + (2097152*y^14 + 34865152*y^13 + 262635520*y^12 + 1187049472*y^11 + 3593318400*y^10 + 7701010688*y^9 + 12043471488*y^8 + 13957194496*y^7 + 12043471488*y^6 + 7701010688*y^5 + 3593318400*y^4 + 1187049472*y^3 + 262635520*y^2 + 34865152*y + 2097152)*x^8/8! + ...
This triangle of coefficients T(n,k) of x^n*y^k/n! in e.g.f. A(x,y) begins:
1;
2, 4, 2;
9, 39, 60, 39, 9;
64, 432, 1160, 1584, 1160, 432, 64;
625, 5750, 22275, 47380, 60460, 47380, 22275, 5750, 625;
7776, 90720, 461160, 1343160, 2479464, 3029040, 2479464, 1343160, 461160, 90720, 7776;
117649, 1663893, 10489969, 38937360, 94679711, 158760987, 188149822, 158760987, 94679711, 38937360, 10489969, 1663893, 117649;
2097152, 34865152, 262635520, 1187049472, 3593318400, 7701010688, 12043471488, 13957194496, 12043471488, 7701010688, 3593318400, 1187049472, 262635520, 34865152, 2097152; ...
-
{T(n, k) = polcoeff(prod(m=0, n-2, n + (2*n+m)*y + n*y^2 +y*O(y^k)), k, y)}
for(n=1, 10, for(k=0, 2*n-2, print1(T(n, k), ", ")); print(""))
-
{T(n,k) = my(A = serreverse( x*(1 - x*y +x*O(x^n) )^((1+y)^2/y)));
n!*polcoeff(polcoeff(A,n,x),k,y)}
for(n=1, 10, for(k=0, 2*n-2, print1(T(n, k), ", ")); print(""))
A334610
a(n) is the total number of down-steps after the final up-step in all 4_1-Dyck paths of length 5*n (n up-steps and 4*n down-steps).
Original entry on oeis.org
0, 7, 58, 505, 4650, 44677, 443238, 4507461, 46744100, 492492330, 5257084420, 56734340091, 618001356458, 6785943435960, 75033214770640, 834733624099485, 9336542892778440, 104932793226255165, 1184421713336050590, 13421053387405062290, 152613573227667516580
Offset: 0
For n=1, a(1) = 7 is the total number of down-steps after the last up-step in Udddd, dUddd.
-
a[n_] := 2 * Binomial[5*n + 7, n + 1]/(5*n + 7) - 4 * Binomial[5*n + 2, n]/(5*n + 2); Array[a, 21, 0] (* Amiram Eldar, May 13 2020 *)
A361240
Number of nonequivalent noncrossing triangular cacti with n triangles up to rotation and reflection.
Original entry on oeis.org
1, 1, 1, 4, 19, 124, 931, 7801, 68685, 630850, 5966610, 57808920, 571178751, 5737672339, 58455577800, 602859484608, 6283968796705, 66119472527814, 701526880303315, 7498841163925819, 80696081185766970, 873654670250482120, 9510760874015305314, 104056578392127906720
Offset: 0
A365668
G.f. A(x) satisfies: A(x) = x * (1 + A(x))^5 / (1 - 2 * A(x)).
Original entry on oeis.org
0, 1, 7, 73, 905, 12354, 179305, 2715192, 42414021, 678476755, 11058588574, 182999237590, 3066447596459, 51926183715280, 887204891847960, 15276037569668880, 264797324173666845, 4617195655522976361, 80930337327794271445, 1425171253004955494215, 25202145191953299213490
Offset: 0
-
nmax = 20; A[] = 0; Do[A[x] = x (1 + A[x])^5/(1 - 2 A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
CoefficientList[InverseSeries[Series[x (1 - 2 x)/(1 + x)^5, {x, 0, 20}], x], x]
Join[{0}, Table[1/n Sum[Binomial[n + k - 1, k] Binomial[5 n, n - k - 1] 2^k, {k, 0, n - 1}], {n, 1, 20}]]
A366035
G.f. A(x) satisfies: A(x) = x * (1 + A(x))^5 / (1 - 3 * A(x)).
Original entry on oeis.org
0, 1, 8, 98, 1440, 23389, 404712, 7314724, 136476912, 2608808180, 50828498336, 1005682252458, 20152470321984, 408149824237302, 8341496306085040, 171812412714350280, 3562961488550366480, 74328284438252301996, 1558783863783469298016, 32844108784368485209320, 694957689921176181019520
Offset: 0
-
nmax = 20; A[] = 0; Do[A[x] = x (1 + A[x])^5/(1 - 3 A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
CoefficientList[InverseSeries[Series[x (1 - 3 x)/(1 + x)^5, {x, 0, 20}], x], x]
Join[{0}, Table[1/n Sum[Binomial[n + k - 1, k] Binomial[5 n, n - k - 1] 3^k, {k, 0, n - 1}], {n, 1, 20}]]
A366036
G.f. A(x) satisfies: A(x) = x * (1 + A(x))^5 / (1 - 4 * A(x)).
Original entry on oeis.org
0, 1, 9, 127, 2165, 40914, 824859, 17383720, 378373437, 8440227235, 191938302578, 4433259845898, 103716352560119, 2452629475989840, 58529969579982600, 1407775987050271920, 34092047564798908045, 830565580516900384329, 20342106952028722530603, 500573735323751221019425, 12370242700776737398052970
Offset: 0
-
nmax = 20; A[] = 0; Do[A[x] = x (1 + A[x])^5/(1 - 4 A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
CoefficientList[InverseSeries[Series[x (1 - 4 x)/(1 + x)^5, {x, 0, 20}], x], x]
Join[{0}, Table[1/n Sum[Binomial[n + k - 1, k] Binomial[5 n, n - k - 1] 4^k, {k, 0, n - 1}], {n, 1, 20}]]
A380553
G.f. A(x) satisfies x = Sum_{n>=1} A( x^n*(1-x)^(4*n) ).
Original entry on oeis.org
1, 3, 25, 200, 1770, 16351, 158223, 1577328, 16112031, 167708890, 1772645419, 18974340640, 205263418940, 2240623110285, 24648785800540, 272994642782048, 3041495503591364, 34064252952038769, 383302465665133013, 4331178750570145160, 49126274119206904221, 559128033687856289017
Offset: 1
G.f.: A(x) = x + 3*x^2 + 25*x^3 + 200*x^4 + 1770*x^5 + 16351*x^6 + 158223*x^7 + 1577328*x^8 + 16112031*x^9 + 167708890*x^10 + ...
where x = Sum_{n>=1} A( x^n*(1-x)^(4*n) ).
RELATED SERIES.
Sum_{n>=1} a(n) * x^n/(1-x^n) = x + 4*x^2 + 26*x^3 + 204*x^4 + 1771*x^5 + 16380*x^6 + 158224*x^7 + 1577532*x^8 + ... + A118971(n)*x^(n) + ...
which equals x*F(x)^4 where F(x) = 1 + x*F(x)^5 is the g.f. of A002294.
-
\\ As the Moebius transform of A118971 \\
{a(n) = sumdiv(n,d, moebius(n/d) * binomial(5*d-1,d-1)*4/(5*d-1) )}
for(n=1,30,print1(a(n),", "))
-
\\ By definition x = Sum_{n>=1} A( x^n*(1-x)^(4*n) ) \\
{a(n) = my(V=[0,1]); for(i=0,n, V = concat(V,0); A = Ser(V);
V[#V] = polcoef(x - sum(m=1,#V, subst(A,x, x^m*(1-x)^(4*m) +x*O(x^#V)) ),#V-1)); V[n+1]}
for(n=1,30,print1(a(n),", "))
A381986
E.g.f. A(x) satisfies A(x) = exp(x) * B(x*A(x)^2), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.
Original entry on oeis.org
1, 2, 17, 388, 14329, 727206, 46984729, 3689119624, 341097752657, 36302764864330, 4371463743828481, 587606216836328460, 87219196719691250185, 14168990447072685567214, 2500554381188629649979593, 476391652257266128440376336, 97447147561230881896398507553
Offset: 0
A384942
G.f. A(x) satisfies A(x) = 1 + x/A(-x*A(x))^5.
Original entry on oeis.org
1, 1, 5, -5, -135, -110, 3661, 16440, -1375, -827075, -8388505, 2298072, 496514205, 2782147265, 322830120, -164675585390, -1846591014842, -3084367863270, 84920580735040, 845318162940805, 4163798547024100, -18708392155753220, -503209620889452990, -3212928238924865090
Offset: 0
-
a(n, k=-1) = if(n*k==0, 0^n, (-1)^n*k*sum(j=1, n, binomial(-n+2*j+k-1, j-1)*a(n-j, 5*j)/j));
Comments