cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 90 results. Next

A153668 Greatest number m such that the fractional part of (3/2)^A153664(n) >= 1-(1/m).

Original entry on oeis.org

2, 14, 222, 1772, 2747, 12347, 135794, 90529, 222246, 570361, 2134829, 6901329, 4600886, 3067257, 5380892, 75503109, 814558605, 543039070, 362026046, 241350697, 160900465, 107266976, 101721580, 190708740, 127139160
Offset: 1

Views

Author

Hieronymus Fischer, Dec 31 2008

Keywords

Examples

			a(2)=14, since 1-(1/15)=0.933...>fract((3/2)^A153664(2))=fract((3/2)^14)=0.929...>=1-(1/14).
		

Crossrefs

Programs

  • Mathematica
    A153664 = {1, 14, 163, 1256, 2677, 8093, 49304, 49305, 158643, 164000, 835999, 2242294, 2242295, 2242296, 3965133, 25380333, 92600006, 92600007, 92600008, 92600009, 92600010, 92600011, 9267816, 125040717, 125040718};
    Table[fp = FractionalPart[(3/2)^A153664[[n]]]; m = Floor[1/(1 - fp)];
    While[fp >= 1 - (1/m), m++]; m - 1, {n, 1, Length[A153664]}] (* Robert Price, Mar 26 2019 *)

Formula

a(n) = floor(1/(1-fract((3/2)^A153664(n)))), where fract(x) = x-floor(x).

Extensions

a(11)-a(25) from Robert Price, May 10 2012

A034082 a(n) = least integer m such that the part after the decimal point of the n-th root of m starts with the digit 5.

Original entry on oeis.org

21, 4, 6, 8, 12, 18, 26, 39, 58, 87, 130, 195, 292, 438, 657, 986, 1478, 2217, 3326, 4988, 7482, 11223, 16835, 25252, 37877, 56816, 85223, 127835, 191752, 287627, 431440, 647160, 970740, 1456110, 2184165, 3276247, 4914370, 7371555, 11057333
Offset: 2

Views

Author

Patrick De Geest, Sep 15 1998

Keywords

Examples

			a(25)=25252 -> 25252^(1/25)=1.{5}000019762083...
		

Crossrefs

Programs

Formula

For n > 2: a(n) = ceiling((3/2)^n) = A002379(n) + 1. - Henry Bottomley, May 02 2001

Extensions

Definition clarified by N. J. A. Sloane, May 24 2021

A094500 Least number k such that (n+1)^k / n^k >= 2.

Original entry on oeis.org

1, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 10, 11, 11, 12, 13, 13, 14, 15, 15, 16, 17, 17, 18, 19, 20, 20, 21, 22, 22, 23, 24, 24, 25, 26, 26, 27, 28, 29, 29, 30, 31, 31, 32, 33, 33, 34, 35, 36, 36, 37, 38, 38, 39, 40, 40, 41, 42, 42, 43, 44, 45, 45, 46, 47, 47, 48, 49, 49, 50, 51, 51
Offset: 1

Views

Author

Robert G. Wilson v, May 26 2004

Keywords

Comments

This sequence also describes the minimum number of (n+1)-player games, where each player has an equal chance of winning, that must be played for a given player to have at least a 50% chance of winning at least once. E.g., a(3) = 3 because in a 4-player random game, a given player will have a greater than 50% chance of winning at least once if 3 games are played. - Bryan Jacobs (bryanjj(AT)gmail.com), Apr 28 2006
Also, a(n) denotes a median m of the geometric random variable on the positive integers with mean value n+1. The median is obtained by solving 1-(n/n+1)^m >= 1/2 for least integer m. - Dennis P. Walsh, Aug 13 2012
The limit n -> inf. a(n)/n = log 2. - Robert G. Wilson v, May 13 2014

Examples

			a(3) = 3 because (4/3)^2 < 2 and (4/3)^3 > 2.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 1}, While[((n + 1)/n)^k < 2, k++]; k]; Array[f, 75]
    (* to view the limit *) Array[ f/# &, 1000] (* Robert G. Wilson v, May 13 2014 *)
  • PARI
    a(n)=ceil(log(2)/log(1+1/n)) \\ Charles R Greathouse IV, Sep 02 2015

Formula

a(n) = n*log(2) + O(1). - Charles R Greathouse IV, Sep 02 2015

Extensions

Edited by Jon E. Schoenfield, Apr 26 2014

A070759 n for which floor((3/2)^n) is prime.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 21, 22, 98, 106, 164, 189, 219, 364, 443, 670, 775, 1919, 2204, 2715, 3692, 4228, 4912, 10466, 12300, 14087, 21659, 28170, 55832, 66577, 87309, 87505, 98144, 167512, 259517
Offset: 1

Views

Author

Eric W. Weisstein, May 04 2002

Keywords

Comments

No more terms through 500000. - Ryan Propper, Dec 28 2008

References

  • R. K. Guy, Unsolved Problems in Number Theory, E19

Crossrefs

Indices of primes in A002379.

Programs

  • Mathematica
    Do[ If[ PrimeQ[ Floor[(3/2)^n]], Print[n]], {n, 1, 12500}]

Extensions

One more term from Ralf Stephan, Oct 13 2002
Corrected and extended by Robert G. Wilson v, Jan 15 2003
More terms from Ryan Propper, Jan 25 2008
6 more terms from Ryan Propper, Dec 28 2008

A264918 Decimal expansion of constant z = Sum_{n>=1} {(3/2)^n} / 2^n, where {x} denotes the fractional part of x.

Original entry on oeis.org

3, 9, 3, 1, 8, 8, 4, 7, 7, 0, 4, 9, 6, 4, 4, 3, 2, 4, 4, 9, 7, 2, 5, 8, 2, 1, 3, 1, 3, 8, 9, 0, 3, 8, 8, 5, 8, 5, 4, 8, 3, 9, 1, 4, 0, 7, 8, 8, 6, 6, 2, 8, 6, 9, 5, 3, 9, 2, 9, 3, 2, 4, 7, 5, 7, 5, 7, 8, 7, 7, 5, 8, 3, 3, 8, 9, 7, 4, 9, 8, 6, 6, 8, 1, 0, 9, 7, 6, 6, 6, 2, 0, 6, 1, 0, 1, 8, 5, 8, 8, 8, 0, 1, 3, 3, 3, 0, 0, 8, 0, 5, 9, 3, 2, 2, 6, 3, 1, 5, 3, 2, 6, 8, 0, 9, 0, 4, 7, 5, 0, 4, 9, 4, 2, 6, 6, 6, 1, 2, 1, 1, 4, 2, 4, 3, 3, 4, 9, 8, 4, 4, 3, 5, 8, 4, 7, 7, 5, 8, 5, 0, 6, 5, 5, 9, 3, 3, 7, 2, 5, 0, 9, 1, 4, 3, 2, 8, 8, 7, 7, 0, 5, 4, 3, 2, 2, 3, 1, 4, 0, 7, 7, 1, 7, 1, 7, 5, 9, 5, 3, 3, 3, 7, 7, 6
Offset: 1

Views

Author

Paul D. Hanna, Dec 03 2015

Keywords

Examples

			z = 0.39318847704964432449725821313890388585483914078866\
28695392932475757877583389749866810976662061018588\
80133300805932263153268090475049426661211424334984\
43584775850655933725091432887705432231407717175953\
33776901692614854937460993931094741172922114373160\
19617637538747813543456758934332723336245738884968...
INFINITE SERIES.
(1) z = 1/4 + 1/4^2 + 3/4^3 + 1/4^4 + 19/4^5 + 25/4^6 + 11/4^8 + 161/4^9 + 227/4^10 + 681/4^11 + 1019/4^12 +...+ A002380(n)/4^n +...
(2) 3 - z = 1/2 + 2/2^2 + 3/2^3 + 5/2^4 + 7/2^5 + 11/2^6 + 17/2^7 + 25/2^8 + 38/2^9 + 57/2^10 + 86/2^11 + 129/2^12 + 194/2^13 + 291/2^14 +...+ A002379(n)/2^n +...
where
3 - z = 2.60681152295035567550274178686109611414516...
		

Crossrefs

Cf. A002379 ([(3/2)^n]), A002380 (3^n mod 2^n), A264919, A264920, A264921, A264922.

Formula

z = Sum_{n>=1} (3^n mod 2^n) / 4^n = Sum_{n>=1} A002380(n) / 4^n.
3 - z = Sum_{n>=1} [(3/2)^n] / 2^n = Sum_{n>=1} A002379(n) / 2^n, where [x] denotes the integer floor function of x.

A065565 a(n) = floor((5/4)^n).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 3, 4, 5, 7, 9, 11, 14, 18, 22, 28, 35, 44, 55, 69, 86, 108, 135, 169, 211, 264, 330, 413, 516, 646, 807, 1009, 1262, 1577, 1972, 2465, 3081, 3851, 4814, 6018, 7523, 9403, 11754, 14693, 18367, 22958, 28698, 35873, 44841, 56051, 70064, 87581
Offset: 0

Views

Author

Benoit Cloitre, Nov 30 2001

Keywords

Comments

a(n) is also the curvature (rounded down) of the circle inscribed in the n-th 3:4:5 triangle arranged in a spiral as shown in the illustration in the links section. - Kival Ngaokrajang, Aug 21 2013
By the result of Dubickas and Novikas, a(n) is divisible by at least one of 2, 3, 7, 11, 13 infinitely often, so that a(n) is composite infinitely often. - Tomohiro Yamada, Apr 23 2017

Crossrefs

Cf. A064628. - Tomohiro Yamada, Apr 23 2017

Programs

Extensions

Edited by N. J. A. Sloane at the suggestion of Stefan Steinerberger, Jun 20 2007
Offset changed from 1 to 0 by Harry J. Smith, Oct 22 2009

A070758 Values of floor((3/2)^n) that are composite.

Original entry on oeis.org

25, 38, 57, 86, 129, 194, 291, 437, 656, 985, 1477, 2216, 3325, 11222, 16834, 25251, 37876, 56815, 85222, 127834, 191751, 287626, 431439, 647159, 970739, 1456109, 2184164, 3276246, 4914369, 7371554, 11057332, 16585998, 24878997, 37318496
Offset: 1

Views

Author

Eric W. Weisstein, May 04 2002

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, E19

Crossrefs

Composites in A002379.

Programs

  • Maple
    remove(isprime, [seq(floor((3/2)^n),n=2..100)]); # Robert Israel, Oct 30 2019
  • Mathematica
    Select[Floor[(3/2)^Range[50]],CompositeQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 11 2017 *)

A071532 a(n) = (-1) * Sum_{k=1..n} (-1)^floor((3/2)^k).

Original entry on oeis.org

1, 0, 1, 2, 3, 4, 5, 6, 5, 6, 5, 6, 5, 6, 7, 6, 7, 8, 7, 8, 9, 10, 9, 8, 9, 8, 9, 8, 7, 8, 7, 8, 9, 10, 11, 10, 9, 10, 9, 8, 7, 8, 7, 6, 7, 8, 7, 8, 7, 6, 5, 6, 7, 6, 7, 6, 7, 8, 9, 8, 9, 10, 11, 12, 13, 12, 11, 10, 11, 10, 11, 10, 9, 10, 9, 10, 9, 8, 7, 6, 5, 6, 7, 6, 7, 6, 5, 4, 5, 6, 5, 4, 5, 4, 3
Offset: 1

Views

Author

Benoit Cloitre, Jun 20 2002

Keywords

Comments

Let b(n) denote the number of k with 0<=k<=n such that floor((3/2)^k) = A002379(k) is even; then a(n) = n-2*b(n).
Equivalently: let c(n) denote the number of k, 0<=k<=n, such that floor((3/2)^k) = A002379(k) is odd, then a(n) = 2*c(n)-n.
Is a(n)>0? For n large enough does a(n)>sqrt(n) always hold?
Conjecture: asymptotically, a(n) ~ C * Log(n)^2 with C = 1.4.....

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[n_] := a[n] = a[n - 1] - (-1)^Floor[(3/2)^n]; Table[ a[n], {n, 0, 95}]
  • PARI
    a(n)=-sum(i=1, n, sign((-1)^floor((3/2)^i)))
    
  • PARI
    a(n)=n-2*sum(k=0,n,if(floor((3/2)^k)%2,0,1))

Formula

a(n) = (-1) * Sum_{i=1..n} (-1)^A002379(i).

Extensions

Edited by Ralf Stephan, Sep 01 2004

A082511 a(n) = 3^n mod 2n.

Original entry on oeis.org

1, 1, 3, 1, 3, 9, 3, 1, 9, 9, 3, 9, 3, 9, 27, 1, 3, 9, 3, 1, 27, 9, 3, 33, 43, 9, 27, 25, 3, 9, 3, 1, 27, 9, 47, 9, 3, 9, 27, 1, 3, 57, 3, 81, 63, 9, 3, 33, 31, 49, 27, 81, 3, 81, 67, 65, 27, 9, 3, 81, 3, 9, 27, 1, 113, 69, 3, 81, 27, 109, 3, 81, 3, 9, 57, 81, 75, 105, 3, 1, 81, 9, 3, 57, 73
Offset: 1

Views

Author

Labos Elemer, Apr 28 2003

Keywords

Examples

			Residues are often also powers of 3, that is, 3^n = k*2*n + 3^j, as is the case for n=1..23. The first terms that are not powers of 3 are a(24)=33 and a(25)=43.
a(6)=9: modulus = 2*n = 12; 3^n = 3^6 = 729 = 60*12 + 9 = 720 + a(6).
		

Crossrefs

Programs

  • Mathematica
    Table[PowerMod[3,n,2n],{n,90}] (* Harvey P. Dale, Jan 21 2014 *)
  • PARI
    a(n) = lift(Mod(3, 2*n)^n) \\ Felix Fröhlich, Oct 20 2018
  • Python
    for n in range(1, 80): print(pow(3, n, 2*n), end=" ") # Stefano Spezia, Oct 20 2018
    

A170827 Sum of digits after the decimal point in the decimal expansion of (3/2)^n.

Original entry on oeis.org

0, 5, 7, 15, 13, 29, 25, 37, 38, 43, 42, 67, 60, 67, 60, 85, 73, 77, 71, 79, 95, 107, 106, 100, 95, 120, 95, 137, 143, 146, 138, 140, 147, 166, 172, 163, 172, 177, 180, 193, 158, 174, 171, 184, 177, 188, 188, 223, 212, 241, 213, 198, 243, 229, 236, 245, 278, 281, 305, 304
Offset: 0

Views

Author

Michel Lagneau, Dec 28 2009

Keywords

Comments

Some terms appear more than once, 60 being the first. - Robert G. Wilson v, Mar 10 2015

Examples

			1.0
1.5
2.25
3.375
5.0625
7.59375
11.390625
17.0859375
25.62890625
		

Crossrefs

Programs

  • Mathematica
    td[n_]:=Module[{rd=RealDigits[(3/2)^n]},Total[Drop[rd[[1]], rd[[2]]]]]; Array[td,60,0] (* Harvey P. Dale, Dec 13 2011 *)
  • PARI
    a(n) = sumdigits(lift(Mod(15,10^n)^n)) \\ Jianing Song, Sep 28 2022

Extensions

Edited by N. J. A. Sloane, Dec 28 2009
Previous Showing 21-30 of 90 results. Next