cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 71 results. Next

A217084 Numbers n such that (n^71-1)/(n-1) is prime.

Original entry on oeis.org

3, 6, 17, 24, 37, 89, 132, 374, 387, 402, 421, 435, 453, 464, 490, 516, 708, 736, 919, 947, 981, 1033, 1067, 1170, 1195, 1253, 1284, 1349, 1385, 1409, 1479, 1709, 1724, 1726, 1735, 1875, 1950, 1984, 2012, 2070, 2124, 2133, 2161, 2194, 2424, 2432, 2459, 2531, 2552
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Sep 26 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 1000], PrimeQ[(#^71 - 1)/(# - 1)] &] (* T. D. Noe, Sep 26 2012 *)
  • PARI
    is(n)=isprime((n^71-1)/(n-1)) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

More terms from T. D. Noe, Sep 26 2012

A217085 Numbers n such that (n^73-1)/(n-1) is prime.

Original entry on oeis.org

11, 15, 75, 114, 195, 215, 295, 335, 378, 559, 566, 650, 660, 832, 871, 904, 966, 1021, 1112, 1203, 1334, 1433, 1485, 1724, 1822, 1959, 1998, 2115, 2154, 2432, 2465, 2486, 2544, 2559, 2564, 2575, 2611, 2681, 2705, 2735, 2754, 2806, 2880, 3158, 3222, 3306, 3368
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Sep 26 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 1000], PrimeQ[(#^73 - 1)/(# - 1)] &] (* T. D. Noe, Sep 26 2012 *)
  • PARI
    is(n)=isprime((n^73-1)/(n-1)) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

More terms from T. D. Noe, Sep 26 2012

A217086 Numbers n such that (n^79-1)/(n-1) is prime.

Original entry on oeis.org

22, 112, 140, 158, 170, 254, 271, 330, 334, 354, 390, 483, 528, 560, 565, 714, 850, 888, 924, 929, 933, 935, 970, 1019, 1047, 1141, 1266, 1338, 1359, 1376, 1412, 1485, 1504, 1542, 1598, 1607, 1618, 1747, 1773, 1814, 1843, 2087, 2088, 2100, 2167, 2186, 2233, 2311
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Sep 26 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 1000], PrimeQ[(#^79 - 1)/(# - 1)] &] (* T. D. Noe, Sep 26 2012 *)
  • PARI
    is(n)=isprime((n^79-1)/(n-1)) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

More terms from T. D. Noe, Sep 26 2012

A217087 Numbers n such that (n^83-1)/(n-1) is prime.

Original entry on oeis.org

41, 146, 386, 593, 667, 688, 906, 927, 930, 1025, 1032, 1111, 1410, 1437, 1638, 1829, 1960, 2045, 2381, 2384, 2618, 2807, 2909, 3059, 3164, 3268, 3370, 3783, 3861, 4043, 4054, 4198, 4284, 4539, 4934, 4968, 4992, 5009, 5047, 5049, 5111, 5217, 5237, 5342, 5367
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Sep 26 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 1000], PrimeQ[(#^83 - 1)/(# - 1)] &] (* T. D. Noe, Sep 26 2012 *)
  • PARI
    is(n)=isprime((n^83-1)/(n-1)) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

More terms from T. D. Noe, Sep 26 2012

A230252 Number of ways to write n = x + y (x, y > 0) with 2*x + 1, x^2 + x + 1 and y^2 + y + 1 all prime.

Original entry on oeis.org

0, 1, 2, 3, 2, 3, 4, 4, 4, 3, 4, 1, 3, 3, 3, 5, 5, 4, 3, 6, 4, 7, 7, 2, 4, 6, 4, 4, 6, 3, 1, 4, 2, 4, 7, 4, 1, 4, 4, 2, 6, 4, 3, 4, 2, 3, 5, 3, 2, 1, 2, 3, 6, 2, 6, 6, 3, 5, 4, 5, 3, 7, 2, 4, 6, 2, 4, 5, 3, 5, 8, 5, 2, 10, 4, 4, 8, 5, 6, 7, 8, 4, 11, 4, 3, 6, 4, 2, 4, 8, 8, 11, 5, 3, 11, 5, 3, 6, 4, 5
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 13 2013

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 1.
(ii) Any integer n > 3 can be written as p + q with p, 2*p - 3 and q^2 + q + 1 all prime. Also, each integer n > 3 not equal to 30 can be expressed as p + q with p, q^2 + q - 1 and q^2 + q + 1 all prime.
(iii) Any integer n > 1 can be written as x + y (x, y > 0) with x^2 + 1 (or 4*x^2+1) and y^2 + y + 1 (or 4*y^2 + 1) both prime.
(iv) Each integer n > 3 can be expressed as p + q (q > 0) with p, 2*p - 3 and 4*q^2 + 1 all prime.
(v) Any even number greater than 4 can be written as p + q with p, q and p^2 + 4 (or p^2 - 2) all prime. Also, each even number greater than 2 and not equal to 122 can be expressed as p + q with p, q and (p-1)^2 + 1 all prime.
We have verified the first part for n up to 10^8.

Examples

			a(5) = 2 since 5 = 2 + 3 = 3 + 2, and 2*2+1 = 5, 2*3+1 = 7, 2^2+2+1 = 7, 3^2+3+1 = 13 are all prime.
a(31) = 1 since 31 = 14 + 17, and 2*14+1 = 29, 14^2+14+1 = 211 and 17^2+17+1 = 307 are all prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[If[PrimeQ[2i+1]&&PrimeQ[i^2+i+1]&&PrimeQ[(n-i)^2+n-i+1],1,0],{i,1,n-1}]
    Table[a[n],{n,1,100}]

A250177 Numbers n such that Phi_21(n) is prime, where Phi is the cyclotomic polynomial.

Original entry on oeis.org

3, 6, 7, 12, 22, 27, 28, 35, 41, 59, 63, 69, 112, 127, 132, 133, 136, 140, 164, 166, 202, 215, 218, 276, 288, 307, 323, 334, 343, 377, 383, 433, 474, 479, 516, 519, 521, 532, 538, 549, 575, 586, 622, 647, 675, 680, 692, 733, 790, 815, 822, 902, 909, 911, 915, 952, 966, 1025, 1034, 1048, 1093
Offset: 1

Views

Author

Eric Chen, Dec 24 2014

Keywords

Crossrefs

Cf. A008864 (1), A006093 (2), A002384 (3), A005574 (4), A049409 (5), A055494 (6), A100330 (7), A000068 (8), A153439 (9), A250392 (10), A162862 (11), A246397 (12), A217070 (13), A250174 (14), A250175 (15), A006314 (16), A217071 (17), A164989 (18), A217072 (19), A250176 (20), this sequence (21), A250178 (22), A217073 (23), A250179 (24), A250180 (25), A250181 (26), A153440 (27), A250182 (28), A217074 (29), A250183 (30), A217075 (31), A006313 (32), A250184 (33), A250185 (34), A250186 (35), A097475 (36), A217076 (37), A250187 (38), A250188 (39), A250189 (40), A217077 (41), A250190 (42), A217078 (43), A250191 (44), A250192 (45), A250193 (46), A217079 (47), A250194 (48), A250195 (49), A250196 (50), A217080 (53), A217081 (59), A217082 (61), A006315 (64), A217083 (67), A217084 (71), A217085 (73), A217086 (79), A153441 (81), A217087 (83), A217088 (89), A217089 (97), A006316 (128), A153442 (243), A056994 (256), A056995 (512), A057465 (1024), A057002 (2048), A088361 (4096), A088362 (8192), A226528 (16384), A226529 (32768), A226530 (65536), A251597 (131072), A244150 (524287), A243959 (1048576).
Cf. A085398 (Least k>1 such that Phi_n(k) is prime).

Programs

  • Mathematica
    a250177[n_] := Select[Range[n], PrimeQ@Cyclotomic[21, #] &]; a250177[1100] (* Michael De Vlieger, Dec 25 2014 *)
  • PARI
    {is(n)=isprime(polcyclo(21,n))};
    for(n=1,100, if(is(n)==1, print1(n, ", "), 0)) \\ G. C. Greubel, Apr 14 2018

A174969 Composites of form n^2 + n + 1.

Original entry on oeis.org

21, 57, 91, 111, 133, 183, 273, 343, 381, 507, 553, 651, 703, 813, 871, 931, 993, 1057, 1191, 1261, 1333, 1407, 1561, 1641, 1807, 1893, 1981, 2071, 2163, 2257, 2353, 2451, 2653, 2757, 2863, 3081, 3193, 3423, 3661, 3783, 4033, 4161, 4291, 4557, 4693, 4971
Offset: 1

Views

Author

Michel Lagneau, Apr 02 2010

Keywords

Examples

			n=1 gives 1^2+1+1=3, which is prime and so not a term, and similarly for n=2,3; n=4 gives 21=3*7, which is a(1).
		

References

  • L. Poletti, Le serie dei numeri primi appartenente alle due forme quadratiche (A) n^2+n+1 e (B) n^2+n-1 per l'intervallo compreso entro 121 milioni, e cioè per tutti i valori di n fino a 11000, Atti della Reale Accademia Nazionale dei Lincei, Memorie della Classe di Scienze Fisiche, Matematiche e Naturali, s. 6, v. 3 (1929), pages 193-218.

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 0 to 200 do:x:=n^2+n+1: if type(x,prime)=false then print (x):else fi:od:
  • Mathematica
    Select[Array[ #^2+#+1&,6!,2],!PrimeQ[ # ]&] (* Vladimir Joseph Stephan Orlovsky, Apr 07 2010 *)
  • PARI
    isok(k) = (k>1) && !isprime(k) && issquare(4*k-3); \\ Michel Marcus, Apr 20 2022

Extensions

Example edited and keyword uned removed by D. S. McNeil, Nov 17 2010

A182253 Nonprime numbers n such that n^2 + n + 1 is prime.

Original entry on oeis.org

1, 6, 8, 12, 14, 15, 20, 21, 24, 27, 33, 38, 50, 54, 57, 62, 66, 69, 75, 77, 78, 80, 90, 99, 105, 110, 111, 117, 119, 138, 141, 143, 147, 150, 153, 155, 161, 162, 164, 168, 176, 188, 189, 192, 194, 203, 206, 209, 215, 218, 231, 236, 245, 246, 266, 272, 278
Offset: 1

Views

Author

Bernard Schott, Dec 18 2012

Keywords

Comments

All these numbers are in A002384 but not in A053182.
The generated prime numbers n^2 + n + 1 are in A185632.
All the generated numbers n^2 + n + 1 = 111_n are by definition Brazilian numbers: A125134. See Links: "Les nombres brésiliens" - Section V.5 page 35.

Crossrefs

Programs

  • Mathematica
    Select[Range@ 280, And[! PrimeQ@ #, PrimeQ[#^2 + # + 1]] &] (* Michael De Vlieger, Jul 30 2017 *)
  • PARI
    isok(n) = ! isprime(n) && isprime(n^2 + n + 1); \\ Michel Marcus, Sep 04 2013

A075714 1+n+n^s is a prime, s=18.

Original entry on oeis.org

1, 2, 9, 24, 27, 44, 80, 251, 263, 311, 332, 356, 366, 371, 458, 515, 546, 548, 561, 566, 597, 599, 608, 650, 674, 713, 717, 722, 746, 762, 855, 867, 909, 969, 989, 993, 1010, 1011, 1022, 1052, 1064, 1191, 1245, 1269, 1275, 1284, 1355, 1376, 1431, 1473
Offset: 1

Views

Author

Zak Seidov, Oct 03 2002

Keywords

Comments

For s = 5,8,11,14,17,20,..., n_s=1+n+n^s is always composite for any n>1. Also at n=1, n_s=3 is a prime for any s. So it is interesting to consider only the cases of s =/= 5,8,11,14,17,20,... and n>1. Here i consider the case s=18 and find several first n's making n_s a prime (or a probable prime).

Examples

			2 is OK because at s=18, n=2, n_s=1+n+n^s=262147 is a prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..1600] | IsPrime(s) where s is 1+n+n^18]; // Vincenzo Librandi, Jul 28 2014
  • Mathematica
    Select[Range[1800], PrimeQ[1 + # + #^18] &]  (* Harvey P. Dale, Mar 24 2011 *)
  • PARI
    for(n=1,1000,if(isprime(1+n+n^18),print1(n",")))
    

Extensions

More terms from Ralf Stephan, Apr 05 2003

A075715 Numbers n such that n^16 + n + 1 is prime.

Original entry on oeis.org

1, 2, 21, 26, 47, 65, 99, 102, 206, 215, 216, 257, 294, 342, 437, 441, 537, 540, 702, 747, 837, 860, 909, 912, 921, 926, 942, 1020, 1071, 1101, 1112, 1125, 1181, 1254, 1266, 1322, 1344, 1364, 1370, 1406, 1422, 1665, 1814, 1821, 1829, 1905, 2024
Offset: 1

Views

Author

Zak Seidov, Oct 03 2002

Keywords

Comments

For s = 5, 8, 11, 14, 17, 20, ..., n_s = 1 + n + n^s is always composite for any n > 1. Also at n = 1, n_s = 3 is a prime for any s. So it is interesting to consider only the cases of s =/= 5, 8, 11, 14, 17, 20, ... and n > 1. Here we consider the case s = 16 and find several first n's making n_s a prime (or a probable prime).

Examples

			2 is in the sequence because 1 + 2 + 2^16 = 65539 is prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..3000]| IsPrime(n^16+n+1)]; // Vincenzo Librandi, Dec 17 2013
  • Maple
    A075715:=n->if type(1+n+n^16, prime) then n; fi; seq(A075715(n), n=1..3000); # Wesley Ivan Hurt, Dec 17 2013
  • Mathematica
    Select[Range[3000], PrimeQ[#^16 + # + 1] &] (* Vincenzo Librandi, Dec 17 2013 *)
  • PARI
    for(n=1,3000,if(isprime(1+n+n^16),print1(n",")))
    

Extensions

More terms from Ralf Stephan, Mar 19 2003
Previous Showing 31-40 of 71 results. Next