cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A111251 Numbers k such that 3*k^2 + 3*k + 1 is prime.

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 10, 11, 13, 14, 17, 23, 24, 25, 27, 28, 30, 32, 34, 37, 38, 41, 42, 45, 48, 49, 52, 55, 58, 62, 63, 66, 67, 74, 80, 81, 86, 88, 90, 91, 93, 95, 105, 108, 119, 123, 125, 128, 129, 136, 140, 142, 147, 153, 156, 157, 158, 164, 165, 170, 171, 172, 175
Offset: 1

Views

Author

Parthasarathy Nambi, Oct 31 2005

Keywords

Comments

That is, positive integers k such that (k+1)^3 - k^3 is prime.
The Hardy-Littlewood constant 1.68109913... of this polynomial is approximately half that of the well-known Euler polynomial A221712, i.e., in comparison, only about half as many prime numbers are produced asymptotically as with k^2 + k + 41. - Hugo Pfoertner, Feb 10 2020
The primes that are obtained are called cuban primes and are in A002407. - Bernard Schott, Feb 13 2020

Examples

			For k=52, 3*52^2 + 3*52 + 1 = 8269 is prime, so 52 is a term.
		

Crossrefs

Cf. A221712, A002407 (resulting primes), A002504, A121259.

Programs

  • Magma
    [k: k in [1..180] | IsPrime(3*k^2 + 3*k + 1)]; // Marius A. Burtea, Feb 10 2020
  • Mathematica
    Select[Range[200],PrimeQ[3#^2+3#+1]&] (* Harvey P. Dale, May 29 2017 *)
  • PARI
    for(n=0,250,if(isprime(3*n^2+3*n+1),print1(n,",")))
    

Formula

a(n) = floor(sqrt(A002407(n)/3)). - Rémi Guillaume, Oct 16 2023
a(n) = A002504(n) - 1. - Rémi Guillaume, Oct 21 2023
a(n) = (A121259(n) - 1)/2. - Rémi Guillaume, Dec 29 2023

Extensions

Extended by Lambert Klasen (lambert.klasen(AT)gmx.net), Nov 02 2005

A113478 Number of cuban primes less than 10^n.

Original entry on oeis.org

0, 1, 4, 11, 28, 64, 173, 438, 1200, 3325, 9289, 26494, 76483, 221530, 645685, 1895983, 5593440, 16578830, 49347768, 147402214, 441641536, 1326941536, 3996900895, 12066234206, 36501753353
Offset: 0

Views

Author

Eric W. Weisstein, Jan 10 2006

Keywords

Examples

			7, 19, 37, 61, 127 are the first few cuban primes, so a(1)=1 and a(2)=4.
		

Crossrefs

Programs

Extensions

a(15)-a(18) from Donovan Johnson, Feb 05 2010
a(19)-a(24) from Hiroaki Yamanouchi, Oct 08 2015

A002648 A variant of the cuban primes: primes p = (x^3 - y^3)/(x - y) where x = y + 2.

Original entry on oeis.org

13, 109, 193, 433, 769, 1201, 1453, 2029, 3469, 3889, 4801, 10093, 12289, 13873, 18253, 20173, 21169, 22189, 28813, 37633, 43201, 47629, 60493, 63949, 65713, 69313, 73009, 76801, 84673, 106033, 108301, 112909, 115249, 129793, 139969, 142573, 147853, 169933
Offset: 1

Views

Author

Keywords

Comments

Primes p such that p = 1 + 3*m^2 for some integer m (A111051). - Michael Somos, Sep 15 2005

Examples

			193 is a term since 193 = (9^3 - 7^3)/(9 - 7) is a prime.
		

References

  • A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929; see Vol. 1, pp. 245-259.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002407, A111051 (values of m).
A subsequence of A007645.

Programs

  • Magma
    [a: n in [0..400] | IsPrime(a) where a is 3*n^2+1]; // Vincenzo Librandi, Dec 02 2011
  • Mathematica
    Select[Table[3n^2+1,{n,0,700}],PrimeQ] (* Vincenzo Librandi, Dec 02 2011 *)
  • PARI
    {a(n)= local(m, c); if(n<1, 0, c=0; m=1; while( cMichael Somos, Sep 15 2005 */
    

Formula

a(n) = 3*A111051(n)^2 + 1. - Paul F. Marrero Romero, Nov 03 2023

Extensions

Entry revised by N. J. A. Sloane, Jan 29 2013

A121259 Numbers k such that (3*k^2 + 1)/4 is prime.

Original entry on oeis.org

3, 5, 7, 9, 13, 19, 21, 23, 27, 29, 35, 47, 49, 51, 55, 57, 61, 65, 69, 75, 77, 83, 85, 91, 97, 99, 105, 111, 117, 125, 127, 133, 135, 149, 161, 163, 173, 177, 181, 183, 187, 191, 211, 217, 239, 247, 251, 257, 259, 273, 281, 285, 295, 307, 313, 315, 317, 329, 331, 341
Offset: 1

Views

Author

Zak Seidov, Aug 23 2006

Keywords

Examples

			(3*5^2 + 1)/4 = 19 is the 2nd prime of this form, so a(2) = 5.
(3*13^2 + 1)/4 = 127 is the 5th prime of this form, so a(5) = 13.
(3*19^2 + 1)/4 = 271 is the 6th prime of this form, so a(6) = 19.
		

Crossrefs

Cf. comment by Michael Somos in A002407.
Cf. A002504, A111251, A111051 (simpler variant).

Programs

Formula

a(n) = sqrt((4*A002407(n) - 1)/3). [corrected by Rémi Guillaume, Dec 07 2023]
a(n) = 2*A002504(n) - 1. - Hugo Pfoertner, Oct 07 2023
a(n) = 2*A111251(n) + 1. - Rémi Guillaume, Dec 06 2023

A221794 Number of primes of the form (x+1)^3 - x^3 with x <= 10^n.

Original entry on oeis.org

1, 7, 42, 263, 1965, 15282, 126826
Offset: 0

Views

Author

Vladimir Pletser, Jan 25 2013

Keywords

Comments

Cuban primes are primes that are the difference of two consecutive cubes, p = (x+1)^3 - x^3 (A002407). They are also primes of the form 3k(k+1) + 1, where values for k+1 are in A002504.

Crossrefs

Cf. A002407, A002504, A003215, A113478 (number of cuban primes < 10^n).

A276261 Centered 21-gonal primes.

Original entry on oeis.org

127, 211, 757, 2521, 2857, 6301, 8527, 16381, 19867, 23689, 24697, 27847, 32341, 37171, 38431, 42337, 66361, 68041, 82237, 89839, 97777, 103951, 114661, 140071, 152461, 162751, 170689, 192781, 204331, 216217, 231547, 240997, 284131, 308827, 353557, 357421, 385057, 389089
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 26 2016

Keywords

Comments

Primes of the form (21*k^2 + 21*k + 2)/2.
Numbers k such that (21*k^2 + 21*k + 2)/2 is prime: 3, 4, 8, 15, 16, 24, 28, 39, 43, 47, 48, 51, 55, 059, 60, 63, 79, 80, 88, 92, 96, 99, ...

Crossrefs

Cf. similar sequences of the centered k-gonal primes: A125602 (k = 3), A027862 (k = 4), A145838 (k = 5), A002407 (k = 6), A144974 (k = 7), A090562 (k = 10), A262344 (k = 11), A262493 (k = 13), A264821 (k = 14), A264822 (k = 15), A264823 (k = 16), A264824 (k = 17), A264825 (k = 18), A264844 (k = 19), A264845 (k = 20), A201715 (k = 24).

Programs

  • Mathematica
    Intersection[Table[(21 k^2 + 21 k + 2)/2, {k, 0, 1000}], Prime[Range[33000]]]
  • PARI
    lista(nn) = for(n=1, nn, if(isprime(p=(21*n^2 + 21*n + 2)/2), print1(p, ", "))); \\ Altug Alkan, Aug 26 2016

A201477 Primes of the form 3n^2 + 4.

Original entry on oeis.org

7, 31, 79, 151, 367, 1087, 1327, 1879, 2887, 3271, 4111, 4567, 6079, 7207, 8431, 15991, 16879, 17791, 19687, 23767, 24847, 25951, 34351, 39679, 42487, 49927, 51487, 54679, 56311, 63079, 73951, 102679, 104911, 111751, 123631, 126079, 128551
Offset: 1

Views

Author

Vincenzo Librandi, Dec 02 2011

Keywords

Comments

Equivalently, generalized cuban primes of the form (x^3-y^3)/(x-y) with x=y+4 (cf. A002407, A007645). - N. J. A. Sloane, Jan 29 2013

Crossrefs

Cf. A002407. A subsequence of A007645. - N. J. A. Sloane, Jan 29 2013
Cf. A111052 (corresponding values of n). - Zak Seidov, Feb 04 2016

Programs

  • Magma
    [a: n in [0..400] | IsPrime(a) where a is 3*n^2+4];
    
  • Mathematica
    Select[Table[3n^2+4,{n,0,700}],PrimeQ]
  • PARI
    lista(nn) = {for (n=0, nn, if (isprime(p=3*n^2 + 4), print1(p, ", ")););} \\ Michel Marcus, Feb 04 2016

Formula

a(n) = 4 + 3*A111052(n)^2. - Zak Seidov, Feb 04 2016

A160432 Primes of the form 3*10^(2*n) + 3*10^n + 1.

Original entry on oeis.org

7, 331, 300030001, 3000000003000000001
Offset: 1

Views

Author

Giacomo Fecondo, May 13 2009

Keywords

Comments

Primes of the form (x^3-y^3)/(x-y) with x = y+1 (which gives A002407) and also y=10^k for some k.
These prime numbers (differences of consecutive cubes: A002407), for k>0, have only three digits different from zero. The first is 3, the middle digit is 3 and the final digit is 1. The other 2(k-1) digits are value 0.
If k=6*i or k=6*i-1 the number is always divisible by 7. [Giacomo Fecondo, May 22 2010]

Examples

			a(1) = 7 = (10^0+1)^3 -(10^0)^3 , 2^3-1^3.
a(2) = 331 =(10^1+1)^3 -(10^1)^3, 11^3-10^3.
a(3) = 300030001 = (10^4+1)^3 - (10^4)^3, 10001^3-10000^3.
a(1)= 3t(t+1)+1 with t=10^0; a(2)= 3t(t+1)+1 with t=10^1; a(3)= 3t(t+1)+1 with t=10^4.
For k=102 (k=6*17) the number (10^102+1)^3-(10^102)^3 is divisible by 7; for k=101 (k=6*17-1) the number (10^101+1)^3-(10^101)^3 is divisible by 7. [_Giacomo Fecondo_, May 22 2010]
		

Crossrefs

Programs

  • Magma
    [a: n in [0..30] | IsPrime(a) where a is 3*10^(2*n) + 3*10^n + 1]; // Vincenzo Librandi, Jan 28 2013
    
  • Mathematica
    Select[Table[3*10^(2 n) + 3*10^n + 1, {n, 0, 1000}], PrimeQ] (* Vincenzo Librandi, Jan 28 2013 *)
  • PARI
    A160432(n,print_all=0,Start=0,Limit=9e9)={for(k=Start,Limit,ispseudoprime(p=3*100^k+3*10^k+1) & !(print_all & print1(p",")) & !n-- & return(p))} \\ - M. F. Hasler, Jan 28 2013

Extensions

New name from Vincenzo Librandi, Jan 28 2013

A221717 Non-cuban primes.

Original entry on oeis.org

2, 3, 5, 11, 13, 17, 23, 29, 31, 41, 43, 47, 53, 59, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 277, 281, 283, 293
Offset: 1

Views

Author

N. J. A. Sloane, Jan 29 2013

Keywords

Comments

Primes not in A002407.

Crossrefs

Programs

  • Mathematica
    nn = 10; c = Select[Table[3 x^2 + 3 x + 1, {x, nn}], PrimeQ[#] &]; Complement[Prime[Range[PrimePi[c[[-1]]]]], c] (* T. D. Noe, Jan 30 2013 *)

A221792 Number of n-digit cuban primes.

Original entry on oeis.org

1, 3, 7, 17, 36, 109, 265, 762, 2125, 5964, 17205, 49989, 145047, 424155, 1250298, 3697457, 10985390, 32768938, 98054446, 294239322, 885300000, 2669959359, 8069333311, 24435519147
Offset: 1

Views

Author

Vladimir Pletser, Jan 25 2013

Keywords

Crossrefs

Formula

a(n) = A113478(n) - A113478(n-1). - Jens Kruse Andersen, Jul 14 2014

Extensions

a(19)-a(24) added from A113478 by Andrew Howroyd, Jan 14 2020
Previous Showing 11-20 of 33 results. Next