cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 93 results. Next

A259844 Number A(n,k) of n X n upper triangular matrices (m_{i,j}) of nonnegative integers with k = Sum_{j=h..n} m_{h,j} - Sum_{i=1..h-1} m_{i,h} for all h in {1,...,n}; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 7, 1, 1, 1, 4, 22, 40, 1, 1, 1, 5, 50, 351, 357, 1, 1, 1, 6, 95, 1686, 11275, 4820, 1, 1, 1, 7, 161, 5796, 138740, 689146, 96030, 1, 1, 1, 8, 252, 16072, 1010385, 25876312, 76718466, 2766572, 1
Offset: 0

Views

Author

Alois P. Heinz, Jul 06 2015

Keywords

Comments

A(n,k) counts generalized Tesler matrices. For the definition of Tesler matrices see A008608.

Examples

			A(2,2) = 3: [1,1; 0,3], [2,0; 0,2], [0,2; 0,4].
Square array A(n,k) begins:
  1,   1,     1,      1,       1,       1, ...
  1,   1,     1,      1,       1,       1, ...
  1,   2,     3,      4,       5,       6, ...
  1,   7,    22,     50,      95,     161, ...
  1,  40,   351,   1686,    5796,   16072, ...
  1, 357, 11275, 138740, 1010385, 5244723, ...
		

Crossrefs

Columns k=0-2 give: A000012, A008608, A259919.
Rows n=0+1,2-3 give: A000012, A000027(k+1), A002412(k+1).

Programs

  • Maple
    b:= proc(n, i, l, k) option remember; (m-> `if`(m=0, 1,
          `if`(i=0, b(l[1]+k, m-1, subsop(1=NULL, l), k), add(
          b(n-j, i-1, subsop(i=l[i]+j, l), k), j=0..n))))(nops(l))
        end:
    A:= (n, k)-> b(k, n-1, [0$(n-1)], k):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[n_, i_, l_List, k_] := b[n, i, l, k] = Function[{m}, If[m == 0, 1, If[i == 0, b[l[[1]] + k, m-1, ReplacePart[l, 1 -> Sequence[]], k], Sum[b[n-j, i-1, ReplacePart[l, i -> l[[i]]+j], k], {j, 0, n}]]]][Length[l]]; A[n_, k_] := b[k, n-1, Array[0&, n-1], k]; A[0, ] = A[, 0] = 1; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Jul 15 2015, after Alois P. Heinz *)

A294843 Expansion of Product_{k>=1} (1 + x^k)^(k*(k+1)*(4*k-1)/6).

Original entry on oeis.org

1, 1, 7, 29, 93, 320, 1026, 3256, 9995, 30102, 88722, 257042, 732876, 2058370, 5703858, 15606076, 42203027, 112882223, 298849221, 783574536, 2035876825, 5244191462, 13398463986, 33967008194, 85476285603, 213583335753, 530099612487, 1307195997381, 3203555001240, 7804386224233
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2017

Keywords

Comments

Weigh transform of the hexagonal pyramidal numbers (A002412).

Crossrefs

Programs

  • Mathematica
    nmax = 29; CoefficientList[Series[Product[(1 + x^k)^(k (k + 1)(4 k - 1)/6), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^2 (d + 1)(4 d - 1)/6, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 29}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A002412(k).
a(n) ~ exp(-2401 * Pi^16 / (671846400000000 * Zeta(5)^3) - 49*Pi^8 * Zeta(3) / (518400000 * Zeta(5)^2) - Zeta(3)^2 / (2400*Zeta(5)) + (343 * Pi^12 / (77760000000 * 15^(1/5) * Zeta(5)^(11/5)) + 7*Pi^4*Zeta(3) / (72000 * 15^(1/5) * Zeta(5)^(6/5))) * n^(1/5) - (49*Pi^8 / (8640000 * 15^(2/5) * Zeta(5)^(7/5)) + Zeta(3) / (8 * (15*Zeta(5))^(2/5))) * n^(2/5) + (7*Pi^4 / (720 * (15*Zeta(5))^(3/5))) * n^(3/5) + (5*(15*Zeta(5))^(1/5)/4) * n^(4/5)) * (3*Zeta(5))^(1/10) / (2^(173/360) * 5^(2/5) * sqrt(Pi) * n^(3/5)). - Vaclav Kotesovec, Nov 10 2017

A329755 Doubly hexagonal pyramidal numbers.

Original entry on oeis.org

0, 1, 252, 7337, 84575, 576080, 2795121, 10700382, 34388362, 96606475, 243939410, 564840991, 1217275137, 2469392562, 4757404575, 8765621740, 15534503236, 26603512517, 44196596312, 71459197125, 112756874195, 174046844356, 263335062397, 391232840362, 571628456750, 822490729775
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 20 2019

Keywords

Crossrefs

Programs

  • Mathematica
    A002412[n_] := n (n + 1) (4 n - 1)/6; a[n_] := A002412[A002412[n]]; Table[a[n], {n, 0, 25}]
    Table[Sum[k (2 k - 1), {k, 0, n (n + 1) (4 n - 1)/6}], {n, 0, 25}]
    nmax = 25; CoefficientList[Series[x (1 + 242 x + 4862 x^2 + 22425 x^3 + 30465 x^4 + 12424 x^5 + 1248 x^6 + 13 x^7)/(1 - x)^10, {x, 0, nmax}], x]
    LinearRecurrence[{10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {0, 1, 252, 7337, 84575, 576080, 2795121, 10700382, 34388362, 96606475}, 26]

Formula

G.f.: x*(1 + 242*x + 4862*x^2 + 22425*x^3 + 30465*x^4 + 12424*x^5 + 1248*x^6 + 13*x^7)/(1 - x)^10.
a(n) = A002412(A002412(n)).
a(n) = Sum_{k=0..A002412(n)} A000384(k).
a(n) = n *(4*n-1) *(n+1) *(4*n^3+3*n^2-n+6) *(8*n^3+6*n^2-2*n-3) / 648 . - R. J. Mathar, Nov 28 2019

A374502 Hexagonal pyramidal numbers that are products of smaller hexagonal pyramidal numbers.

Original entry on oeis.org

1, 4750, 1926049000, 655578709500, 9126464328696330
Offset: 1

Views

Author

Pontus von Brömssen, Jul 09 2024

Keywords

Comments

a(6) > 10^19 (if it exists). - Pontus von Brömssen, Jul 14 2024

Examples

			1 is a term because it is a hexagonal pyramidal number and equals the empty product.
4750 is a term because it is a hexagonal pyramidal number and equals the product of the hexagonal pyramidal numbers 50 and 95.
1926049000 is a term because it is a hexagonal pyramidal number and equals the product of the hexagonal pyramidal numbers 9500 and 202742.
655578709500 is a term because it is a hexagonal pyramidal number and equals the product of the hexagonal pyramidal numbers 50, 31746, and 413015.
9126464328696330 is a term because it is a hexagonal pyramidal number and equals the product of the hexagonal pyramidal numbers 413015 and 22097174022.
		

Crossrefs

Row n=6 of A374498.

Extensions

a(5) from Michael S. Branicky, Jul 09 2024

A211796 Rectangular array: R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and w^k<=x^k+y^k.

Original entry on oeis.org

1, 8, 1, 26, 7, 1, 60, 22, 7, 1, 115, 51, 22, 7, 1, 196, 99, 50, 22, 7, 1, 308, 168, 96, 50, 22, 7, 1, 456, 265, 163, 95, 50, 22, 7, 1, 645, 393, 255, 161, 95, 50, 22, 7, 1, 880, 556, 378, 253, 161, 95, 50, 22, 7, 1, 1166, 760, 534, 374, 252, 161, 95, 50, 22, 7
Offset: 1

Views

Author

Clark Kimberling, Apr 21 2012

Keywords

Comments

Row 1: A002413
Row 2: A211634
Row 3: A211650
Limiting row sequence: A002412
Let R be the array in A211796 and let R' be the array in A211799. Then R(k,n)+R'(k,n)=3^(n-1).
See the Comments at A211790.

Examples

			Northwest corner:
1...8...26...60...115...196...308
1...7...22...51...99....168...265
1...7...22...50...96....163...255
1...7...22...50...95....161...253
1...7...22...50...95....161...252
		

Crossrefs

Cf. A211790.

Programs

  • Mathematica
    z = 48;
    t[k_, n_] := Module[{s = 0},
       (Do[If[w^k <= x^k + y^k, s = s + 1],
           {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)];
    Table[t[1, n], {n, 1, z}]  (* A002413 *)
    Table[t[2, n], {n, 1, z}]  (* A211634 *)
    Table[t[3, n], {n, 1, z}]  (* A211650 *)
    TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]]
    Flatten[Table[t[k, n - k + 1], {n, 1, 12}, {k, 1, n}]] (* A211796 *)
    Table[k (k - 1) (2 k - 1)/6, {k, 1,
      z}] (* row-limit sequence, A002412 *)
    (* Peter J. C. Moses, Apr 13 2012 *)

A211798 R(k,n) = Sum_{y=1..n} Sum_{x=1..n} floor((x^k + y^k)^(1/k)), square array read by descending antidiagonals.

Original entry on oeis.org

2, 12, 1, 36, 7, 1, 80, 23, 7, 1, 150, 54, 22, 7, 1, 252, 103, 51, 22, 7, 1, 392, 175, 97, 50, 22, 7, 1, 576, 276, 164, 95, 50, 22, 7, 1, 810, 409, 258, 162, 95, 50, 22, 7, 1, 1100, 579, 382, 254, 161, 95, 50, 22, 7, 1, 1452, 791, 541, 375, 253, 161, 95, 50, 22
Offset: 1

Views

Author

Clark Kimberling, Apr 26 2012

Keywords

Examples

			Northwest corner:
  2  12  36  80 150 252 392
  1   7  23  54 103 175 276
  1   7  22  51  97 164 258
  1   7  22  50  95 162 254
  1   7  22  50  95 161 254
  1   7  22  50  95 161 253
		

Crossrefs

Cf. A002411 ((1/2) * row 1), A002412 (limiting row), A211791 (row 2), A211792 (row 3).

Programs

  • Mathematica
    f[x_, y_, k_] := f[x, y, k] = Floor[(x^k + y^k)^(1/k)]
    t[k_, n_] := Sum[Sum[f[x, y, k], {x, 1, n}], {y, 1, n}]
    Table[t[1, n], {n, 1, 45}]  (* 2*A002411 *)
    Table[t[2, n], {n, 1, 45}]  (* A211791 *)
    Table[t[3, n], {n, 1, 45}]  (* A211792 *)
    TableForm[Table[t[k, n], {k, 1, 12},
                     {n, 1, 16}]] (* A211798 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, 12}, {k, 1, n}]]

Formula

R(k,n) = Sum_{y=1..n} Sum_{x=1..n} floor((x^k + y^k)^(1/k)).

Extensions

Definition changed by Georg Fischer, Sep 10 2022

A015225 Odd hexagonal pyramidal numbers.

Original entry on oeis.org

1, 7, 95, 161, 525, 715, 1547, 1925, 3417, 4047, 6391, 7337, 10725, 12051, 16675, 18445, 24497, 26775, 34447, 37297, 46781, 50267, 61755, 65941, 79625, 84575, 100647, 106425, 125077, 131747, 153171, 160797, 185185, 193831, 221375, 231105
Offset: 1

Views

Author

Keywords

Crossrefs

Intersection of A002412 (hexagonal pyramidal) and A005408 (odd numbers).

Programs

  • Mathematica
    LinearRecurrence[{1,3,-3,-3,3,1,-1},{1,7,95,161,525,715,1547},36] (* Ant King, Oct 25 2012 *)
  • PARI
    a(n)=(8*n-2*(-1)^n-7)*(1+(-1)^n-4*n)*(3+(-1)^n-4*n)/24 \\ Charles R Greathouse IV, Jul 30 2016

Formula

Odd numbers of the form n*(n+1)*(4n-1)/6.
From Ant King, Oct 25 2012: (Start)
a(n) = a(n-1) +3*a(n-2) -3*a(n-3) -3*a(n-4) +3*a(n-5) +a(n-6) -a(n-7).
a(n) = 3*a(n-2) -3*a(n-4) +a(n-6) +256.
a(n) = (8*n-2*(-1)^n-7)*(1+(-1)^n-4*n)*(3+(-1)^n-4*n)/24.
G.f.: x*(1+6*x+85*x^2+48*x^3+103*x^4+10*x^5+3*x^6) / ((1-x)^4*(1+x)^3). (End)
E.g.f.: (1/6)*(-9 - 6*x - 24*x^2 + 18*exp(x) + ( - 9 + 12*x + 36*x^2 + 32*x^3)*exp(2*x))*exp(-x). - G. C. Greubel, Jul 30 2016

Extensions

More terms from Erich Friedman.

A101492 Triangle read by rows: T(n,k) = (n-k+1)*(4*k+1).

Original entry on oeis.org

1, 2, 5, 3, 10, 9, 4, 15, 18, 13, 5, 20, 27, 26, 17, 6, 25, 36, 39, 34, 21, 7, 30, 45, 52, 51, 42, 25, 8, 35, 54, 65, 68, 63, 50, 29, 9, 40, 63, 78, 85, 84, 75, 58, 33, 10, 45, 72, 91, 102, 105, 100, 87, 66, 37, 11, 50, 81, 104, 119, 126, 125, 116, 99, 74, 41, 12, 55, 90, 117
Offset: 0

Views

Author

Lambert Klasen (lambert.klasen(AT)gmx.de) and Gary W. Adamson, Jan 21 2005

Keywords

Comments

The triangle is generated from the product A*B
of the infinite lower triangular matrices A =
1 0 0 0...
1 1 0 0...
1 1 1 0...
1 1 1 1...
... and B =
1 0 0 0...
1 5 0 0...
1 5 9 0...
1 5 9 13...
...
T(n+0,0) = 1*n = A000027(n+1),
T(n+0,1) = 5*n = A008587(n),
T(n+1,2) = 9*n = A008591(n),
T(n+2,3) = 13*n = A008595(n),
so, for example,
T(n,n) = 4*n+1 = A016813(n),
T(n+1,n) = 8*n+2 = A017089(n),
T(n,0)*T(n,1)/10 = A000217(n) (triangular numbers),
T(n,n)*T(n,0) = A001107(n+1) (10-gonal numbers: 4*n^2 - 3*n),
T(n,n)*T(n,1)/5 = A007742(n).

Crossrefs

Row sums give hexagonal pyramidal numbers A002412.
Cf. A101493 for product B*A, A002412.

Programs

  • GAP
    Flat(List([0..11],n->List([0..n],k->(n+1-k)*(4*k+1)))); # Muniru A Asiru, Mar 07 2019
    
  • Magma
    [[(n+1-k)*(4*k+1): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Mar 07 2019
    
  • Mathematica
    Flatten[Table[(n+1-k)(4k+1),{n,0,15},{k,0,n}]] (* Harvey P. Dale, Jun 09 2011 *)
  • PARI
    T(n, k) = if(k>n,0,(n-k+1)*(4*k+1));
    for(i=0,10, for(j=0,i,print1(T(i,j),", "));print())
    
  • Sage
    [[(n-k+1)*(4*k+1) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 07 2019

A177890 15-gonal (or pentadecagonal) pyramidal numbers: a(n) = n*(n+1)*(13*n-10)/6.

Original entry on oeis.org

0, 1, 16, 58, 140, 275, 476, 756, 1128, 1605, 2200, 2926, 3796, 4823, 6020, 7400, 8976, 10761, 12768, 15010, 17500, 20251, 23276, 26588, 30200, 34125, 38376, 42966, 47908, 53215, 58900, 64976, 71456, 78353, 85680, 93450, 101676, 110371, 119548, 129220
Offset: 0

Views

Author

Bruno Berselli, Dec 14 2010

Keywords

Comments

Also a(n) = (15-m)*A000292(n-1) + n*(n+1)*((m-2)*n - (m-5))/6 being n*(n+1)*((m-2)*n - (m-5))/6 a m-gonal pyramidal number (1 < m < 15). For m=6, a(n) = 9*A000292(n-1) + A002412(n).
Inverse binomial transform of this sequence: 0, 1, 14, 13, 0, 0 (0 continued).

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (thirteenth row of the table).

Crossrefs

Cf. similar sequences listed in A237616.

Programs

  • GAP
    List([0..40], n-> n*(n+1)*(13*n-10)/6); # G. C. Greubel, Aug 30 2019
  • Magma
    I:=[0,1,16,58]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2) +4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jul 04 2012
    
  • Magma
    [n*(n+1)*(13*n-10)/6: n in [0..40]]; // G. C. Greubel, Aug 30 2019
    
  • Maple
    seq(n*(n+1)*(13*n-10)/6, n=0..40); # G. C. Greubel, Aug 30 2019
  • Mathematica
    CoefficientList[Series[x*(1+12*x)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jul 04 2012 *)
    Table[n*(n-1)*(13*n-23)/6, {n,40}] (* G. C. Greubel, Aug 30 2019 *)
    LinearRecurrence[{4,-6,4,-1},{0,1,16,58},40] (* Harvey P. Dale, Dec 21 2022 *)
  • PARI
    vector(40, n, n*(n-1)*(13*n-23)/6) \\ G. C. Greubel, Aug 30 2019
    
  • Sage
    [n*(n+1)*(13*n-10)/6 for n in (0..40)] # G. C. Greubel, Aug 30 2019
    

Formula

G.f.: x*(1+12*x)/(1-x)^4.
a(n) = Sum_{i=0..n} A051867(i).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jul 04 2012
a(n) = Sum_{i=0..n-1} (n-i)*(13*i+1), with a(0)=0. - Bruno Berselli, Feb 10 2014
E.g.f.: x*(6 + 42*x + 13*x^2)*exp(x)/6. - G. C. Greubel, Aug 30 2019

A185958 Accumulation array of the array max{n,k}, by antidiagonals.

Original entry on oeis.org

1, 3, 3, 6, 7, 6, 10, 13, 13, 10, 15, 21, 22, 21, 15, 21, 31, 34, 34, 31, 21, 28, 43, 49, 50, 49, 43, 28, 36, 57, 67, 70, 70, 67, 57, 36, 45, 73, 88, 94, 95, 94, 88, 73, 45, 55, 91, 112, 122, 125, 125, 122, 112, 91, 55, 66, 111, 139, 154, 160, 161, 160, 154, 139, 111, 66, 78, 133, 169, 190, 200, 203, 203, 200, 190, 169, 133, 78, 91, 157, 202, 230, 245, 251, 252, 251, 245, 230, 202, 157, 91, 105, 183, 238, 274, 295, 305, 308, 308, 305, 295, 274, 238, 183, 105
Offset: 1

Views

Author

Clark Kimberling, Feb 07 2011

Keywords

Comments

A member of the accumulation chain
... < A185917 < A051125 < A185958 < ...,
where A051125, written as a rectangular array M, is given by M(n,k)=max{n,k}. See A144112 for the definition of accumulation array.
row 1: A000217
row 2: A002061
diag (1,7,...): A002412
diag (3,13,..): A016061
antidiagonal sums: A070893

Examples

			Northwest corner:
1....3....6....10....15
3....7....13...21....31
6....13...22...34....49
10...21...34...50....70
		

Crossrefs

Programs

  • Maple
    A := proc(n,k) option remember; ## n >= 0 and k = 0 .. n
        if k < 0 or k > n then
            0
        elif n = 0 then
            1
        else
            A(n-1,k) + A(n-1,k-1) - A(n-2,k-1) + max(n-k+1,k+1)
        end if
    end proc: # Yu-Sheng Chang, Jun 05 2020

Formula

From Yu-Sheng Chang, Jun 05 2020: (Start)
O.g.f.: F(z,v) = -(v^2*z^3+v*z^3-3*v*z^2+1)/((v*z^2-v*z-z+1)^2*(v*z^2-1)*(z-1)*(v*z-1)).
T(n,k) = [v^k] 1/2*n^2*(v^(n+2)+1)/(1-v)^2+1/2*n*(3*v^(n+3)-7*v^(n+2)+7*v-3)/(-1+v)^3-1/2*v*((1-v^(1/2))^4*(-1)^n+(1+v^(1/2))^4)*v^(1/2*n)/(1-v)^4+(6*v^2+6*v^(n+2)+v^(n+4)-3*v^(n+3)-3*v+1)/(1-v)^4.
(End)
Previous Showing 61-70 of 93 results. Next