cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 37 results. Next

A279223 Expansion of Product_{k>=1} 1/(1 - x^(k*(k+1)*(5*k-2)/6)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 14, 14, 16, 16, 16, 16, 17, 17, 18, 18, 20, 20, 20, 20, 21, 21, 22, 22, 24, 24, 25, 25, 26, 26, 27, 27, 29, 29, 31, 31, 32, 32, 33, 33, 35, 35, 37, 37
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 08 2016

Keywords

Comments

Number of partitions of n into nonzero heptagonal pyramidal numbers (A002413).

Examples

			a(9) = 2 because we have [8, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax=95; CoefficientList[Series[Product[1/(1 - x^(k (k + 1) (5 k - 2)/6)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^(k*(k+1)*(5*k-2)/6)).

A134081 Triangle T(n, k) = binomial(n, k)*((2*k+1)*(n-k) +k+1)/(k+1), read by rows.

Original entry on oeis.org

1, 2, 1, 3, 5, 1, 4, 12, 8, 1, 5, 22, 26, 11, 1, 6, 35, 60, 45, 14, 1, 7, 51, 115, 125, 69, 17, 1, 8, 70, 196, 280, 224, 98, 20, 1, 9, 92, 308, 546, 574, 364, 132, 23, 1, 10, 117, 456, 966, 1260, 1050, 552, 171, 26, 1
Offset: 0

Views

Author

Gary W. Adamson, Oct 07 2007

Keywords

Examples

			First few rows of the triangle are:
  1;
  2,  1;
  3,  5,   1;
  4, 12,   8,   1;
  5, 22,  26,  11,  1;
  6, 35,  60,  45, 14,  1;
  7, 51, 115, 125, 69, 17, 1;
  ...
		

Crossrefs

Programs

  • Magma
    A134081:= func< n,k | Binomial(n, k)*((2*k+1)*(n-k) +k+1)/(k+1) >;
    [A134081(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 17 2021
  • Mathematica
    T[n_, k_]:= Binomial[n, k]*((2*k+1)*(n-k) +k+1)/(k+1);
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 17 2021 *)
  • Sage
    def A134081(n,k): return binomial(n, k)*((2*k+1)*(n-k) +k+1)/(k+1)
    flatten([[A134081(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 17 2021
    

Formula

Binomial transform of A112295(unsigned).
From G. C. Greubel, Feb 17 2021: (Start)
T(n, k) = binomial(n, k)*((2*k+1)*(n-k) +k+1)/(k+1).
Sum_{k=0..n} T(n, k) = 2^n *n + 1 = A002064(n). (End)

A294844 Expansion of Product_{k>=1} (1 + x^k)^(k*(k+1)*(5*k-2)/6).

Original entry on oeis.org

1, 1, 8, 34, 114, 411, 1380, 4573, 14650, 45995, 141296, 426364, 1265443, 3698011, 10657134, 30312395, 85183177, 236681860, 650686538, 1771098691, 4775571943, 12762628737, 33821018537, 88909273699, 231945942992, 600700301298, 1544897610261, 3946762859175, 10018454809275, 25274880698255
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2017

Keywords

Comments

Weigh transform of the heptagonal pyramidal numbers (A002413).

Crossrefs

Programs

  • Mathematica
    nmax = 29; CoefficientList[Series[Product[(1 + x^k)^(k (k + 1) (5 k - 2)/6), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^2 (d + 1) (5 d - 2)/6, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 29}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A002413(k).
a(n) ~ (3*Zeta(5))^(1/10) / (2^(479/720) * 5^(3/10) * sqrt(Pi) * n^(3/5)) * exp(-2401 * Pi^16 / (1312200000000000 * Zeta(5)^3) - 49 * Pi^8 * Zeta(3) / (405000000 * Zeta(5)^2) - Zeta(3)^2 / (750*Zeta(5)) + (343*Pi^12 / (60750000000 * 2^(3/5) * 3^(1/5) * 5^(2/5) * Zeta(5)^(11/5)) + 7*Pi^4 * Zeta(3) / (22500 * 2^(3/5) * 3^(1/5) * 5^(2/5) * Zeta(5)^(6/5))) * n^(1/5) - (49*Pi^8 / (5400000 * 2^(1/5) * 3^(2/5) * 5^(4/5) * Zeta(5)^(7/5)) + Zeta(3) / (2^(6/5) * 5^(4/5) * (3*Zeta(5))^(2/5))) * n^(2/5) + (7*Pi^4 / (900 * 2^(4/5) * 5^(1/5) * (3*Zeta(5))^(3/5))) * n^(3/5) + (5^(7/5) * (3*Zeta(5))^(1/5) / 2^(12/5)) * n^(4/5)). - Vaclav Kotesovec, Nov 10 2017

A329756 Doubly heptagonal pyramidal numbers.

Original entry on oeis.org

0, 1, 456, 14976, 181780, 1273970, 6293756, 24395756, 79119496, 223821235, 568280240, 1321714636, 2858876956, 5817509516, 11237224740, 20751835560, 36849296016, 63215722181, 105182448536, 170297734920, 269047574180, 415753060646, 629674964556, 936359517556
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 20 2019

Keywords

Crossrefs

Programs

  • Mathematica
    A002413[n_] := n (n + 1) (5 n - 2)/6; a[n_] := A002413[A002413[n]]; Table[a[n], {n, 0, 25}]
    Table[Sum[k (5 k - 3)/2, {k, 0, n (n + 1) (5 n - 2)/6}], {n, 0, 25}]
    nmax = 25; CoefficientList[Series[x (1 + 446 x + 10461 x^2 + 52420 x^3 + 75580 x^4 + 32544 x^5 + 3504 x^6 + 44 x^7)/(1 - x)^10, {x, 0, nmax}], x]
    LinearRecurrence[{10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {0, 1, 456, 14976, 181780, 1273970, 6293756, 24395756, 79119496, 223821235}, 26]

Formula

G.f.: x*(1 + 446*x + 10461*x^2 + 52420*x^3 + 75580*x^4 + 32544*x^5 + 3504*x^6 + 44*x^7)/(1 - x)^10.
a(n) = A002413(A002413(n)).
a(n) = Sum_{k=0..A002413(n)} A000566(k).
a(n) = n *(5*n-2) *(n+1) *(5*n^3+3*n^2-2*n+6) *(25*n^3+15*n^2-10*n-12)/1296. - R. J. Mathar, Nov 28 2019

A125234 Triangle T(n,k) read by rows: the k-th column contains the k-fold iterated partial sum of A000566.

Original entry on oeis.org

1, 7, 1, 18, 8, 1, 34, 26, 9, 1, 55, 60, 35, 10, 1, 81, 115, 95, 45, 11, 1, 112, 196, 210, 140, 56, 12, 1, 148, 308, 406, 350, 196, 68, 13, 1, 189, 456, 714, 756, 546, 264, 81, 14, 1, 235, 645, 1170, 1470, 1302, 810, 345, 95, 15, 1, 286, 880, 1815, 2640, 2772, 2112, 1155, 440, 110, 16, 1
Offset: 1

Views

Author

Gary W. Adamson, Nov 24 2006

Keywords

Comments

The leftmost column contains the heptagonal numbers A000566.
The adjacent columns to the right are A002413, A002418, A027800, A051946, A050484.
Row sums = 1, 8, 27, 70, 161, 348, 727, ... = 6*(2^n-1)-5*n.

Examples

			First few rows of the triangle are:
  1;
  7, 1;
  18, 8, 1;
  34, 26, 9, 1;
  55, 60, 35, 10, 1;
  81, 115, 95, 45, 11, 1;
  112, 196, 210, 140, 56, 12, 1;
Example: T(6,2) = 95 = 35 + 60 = T(5,2) + T(5,1).
		

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, 1966, p. 189.

Crossrefs

Analogous triangles for the hexagonal and pentagonal numbers are A125233 and A125232.

Programs

  • Maple
    A000566 := proc(n) n*(5*n-3)/2 ; end: A125234 := proc(n,k) if k = 0 then A000566(n); elif k>= n then 0 ; else procname(n-1,k-1)+procname(n-1,k) ; fi; end: seq(seq(A125234(n,k),k=0..n-1),n=1..16) ; # R. J. Mathar, Sep 09 2009
  • Mathematica
    A000566[n_] := n(5n-3)/2;
    T[n_, k_] := Which[k == 0, A000566[n], k >= n, 0, True, T[n-1, k-1] + T[n-1, k] ];
    Table[Table[T[n, k], {k, 0, n-1}], {n, 1, 11}] // Flatten (* Jean-François Alcover, Oct 26 2023, after R. J. Mathar *)

Formula

T(n,0) = A000566(n). T(n,k) = T(n-1,k) + T(n-1,k-1), k>0.

Extensions

Edited and extended by R. J. Mathar, Sep 09 2009

A211796 Rectangular array: R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and w^k<=x^k+y^k.

Original entry on oeis.org

1, 8, 1, 26, 7, 1, 60, 22, 7, 1, 115, 51, 22, 7, 1, 196, 99, 50, 22, 7, 1, 308, 168, 96, 50, 22, 7, 1, 456, 265, 163, 95, 50, 22, 7, 1, 645, 393, 255, 161, 95, 50, 22, 7, 1, 880, 556, 378, 253, 161, 95, 50, 22, 7, 1, 1166, 760, 534, 374, 252, 161, 95, 50, 22, 7
Offset: 1

Views

Author

Clark Kimberling, Apr 21 2012

Keywords

Comments

Row 1: A002413
Row 2: A211634
Row 3: A211650
Limiting row sequence: A002412
Let R be the array in A211796 and let R' be the array in A211799. Then R(k,n)+R'(k,n)=3^(n-1).
See the Comments at A211790.

Examples

			Northwest corner:
1...8...26...60...115...196...308
1...7...22...51...99....168...265
1...7...22...50...96....163...255
1...7...22...50...95....161...253
1...7...22...50...95....161...252
		

Crossrefs

Cf. A211790.

Programs

  • Mathematica
    z = 48;
    t[k_, n_] := Module[{s = 0},
       (Do[If[w^k <= x^k + y^k, s = s + 1],
           {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)];
    Table[t[1, n], {n, 1, z}]  (* A002413 *)
    Table[t[2, n], {n, 1, z}]  (* A211634 *)
    Table[t[3, n], {n, 1, z}]  (* A211650 *)
    TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]]
    Flatten[Table[t[k, n - k + 1], {n, 1, 12}, {k, 1, n}]] (* A211796 *)
    Table[k (k - 1) (2 k - 1)/6, {k, 1,
      z}] (* row-limit sequence, A002412 *)
    (* Peter J. C. Moses, Apr 13 2012 *)

A266085 Alternating sum of heptagonal numbers.

Original entry on oeis.org

0, -1, 6, -12, 22, -33, 48, -64, 84, -105, 130, -156, 186, -217, 252, -288, 328, -369, 414, -460, 510, -561, 616, -672, 732, -793, 858, -924, 994, -1065, 1140, -1216, 1296, -1377, 1462, -1548, 1638, -1729, 1824, -1920, 2020, -2121, 2226, -2332, 2442, -2553
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 21 2015

Keywords

Crossrefs

Unsigned terms give antidiagonal sums of A204154. - Nathaniel J. Strout, Nov 14 2019

Programs

  • Magma
    [((10*n^2+4*n-3)*(-1)^n+3)/8: n in [0..50]]; // Vincenzo Librandi, Dec 21 2015
    
  • Magma
    R:=PowerSeriesRing(Integers(), 50); [0] cat  Coefficients(R!(-x*(1 - 4*x)/((1 - x)*(1 + x)^3))); // Marius A. Burtea, Nov 13 2019
    
  • Mathematica
    Table[((10 n^2 + 4 n - 3) (-1)^n + 3)/8, {n, 0, 50}]
    CoefficientList[Series[(x - 4 x^2)/(x^4 + 2 x^3 - 2 x - 1), {x, 0, 50}], x] (* Vincenzo Librandi, Dec 21 2015 *)
    LinearRecurrence[{-2,0,2,1},{0,-1,6,-12},60] (* Harvey P. Dale, Jan 26 2023 *)
  • PARI
    x='x+O('x^100); concat(0, Vec(-x*(1-4*x)/((1-x)*(1+x)^3))) \\ Altug Alkan, Dec 21 2015

Formula

G.f.: -x*(1 - 4*x)/((1 - x)*(1 + x)^3).
a(n) = ((10*n^2 + 4*n - 3)*(-1)^n + 3)/8.
a(n) = Sum_{k = 0..n} (-1)^k*A000566(k).
Lim_{n -> infinity} a(n + 1)/a(n) = -1.
a(n) = (-1)^n*A008728(5*n-5) for n>0. - Bruno Berselli, Dec 21 2015
E.g.f.: (1/8)*exp(-x)*(-3 + 3*exp(2*x) - 14*x + 10*x^2). - Stefano Spezia, Nov 13 2019

A140729 Diagonal A(n,n) of array A(k,n) = Product of first n of k-gonal pyramidal numbers.

Original entry on oeis.org

40, 2100, 324000, 117771500, 86640153600, 115851776040000, 260111401804800000, 922852527136155000000, 4931966428685936640000000, 38193820496218904209973280000, 415101787718859995456102400000000
Offset: 3

Views

Author

Jonathan Vos Post, May 25 2008

Keywords

Comments

The array A(k,n) = Product of first n k-gonal pyramidal numbers begins:
===================================================================
..|n=1|n=2|..n=3|...n=4..|......n=5....|......n=6......|......n=7......|.......n=8.........|
k=3|.1.|.4.|..40.|....800.|.......28000.|.......1568000.|.....131712000.|.......15805440000.|A087047
k=4|.1.|.5.|..70.|...2100.|......115500.|......10510500.|....1471470000.|......300179880000.|
k=5|.1.|.6.|.108.|...4320.|......324000.|......40824000.|....8001504000.|.....2304433152000.|
k=6|.1.|.7.|.154.|...7700.|......731500.|.....117771500.|...29678418000.|....11040371496000.|
k=7|.1.|.8.|.208.|..12480.|.....1435200.|.....281299200.|...86640153600.|....39507910041600.|
k=8|.1.|.9.|.270.|.718900.|.....2551500.|.....589396500.|..214540326000.|...115851776040000.|
===================================================================

Examples

			a(3) = product of the first 3 triangular pyramidal (tetrahedral) numbers (A000292) = A087047(3) = 1 * 4 * 10 = 40.
a(4) = product of the first 4 square pyramidal numbers (A000330) = 1 * 5 * 14 * 30 = 2100.
a(5) = product of the first 5 pentagonal pyramidal numbers (A002411) = 1 * 6 * 18 * 40 * 75 = 324000.
a(6) = product of the first 6 hexagonal pyramidal numbers (A002412) = 1 * 7 * 22 * 50 * 95 * 161 = 117771500.
a(7) = product of the first 7 heptagonal pyramidal numbers (A002413) = 1 * 8 * 26 * 60 * 115 * 196 * 308 = 86640153600.
a(8) = product of the first 8 octagonal pyramidal numbers (A002414) = 1 * 9 * 30 * 70 * 135 * 231 * 364 * 540 = 115851776040000.
		

Crossrefs

Programs

  • Maple
    A130729 := proc(n) n!*(n+1)!*(n-2)^n*pochhammer(1+(5-n)/(n-2),n)/6^n ; end: seq(A130729(n),n=3..30) ; # R. J. Mathar, May 31 2008

Formula

A(k,n) = PRODUCT[j=1..n] (1/6)*j*(j+1)*[(k-2)*j+(5-k)].
a(n) ~ Pi^(3/2) * n^(4*n + 1/2) / (2^(n - 3/2) * 3^(n-1) * exp(3*n+2)) * (1 + (3*log(n) + 3*gamma + 5/4)/n), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Aug 29 2023

Extensions

More terms from R. J. Mathar, May 31 2008

A218324 Odd heptagonal pyramidal numbers.

Original entry on oeis.org

1, 115, 645, 1911, 4233, 7931, 13325, 20735, 30481, 42883, 58261, 76935, 99225, 125451, 155933, 190991, 230945, 276115, 326821, 383383, 446121, 515355, 591405, 674591, 765233, 863651, 970165, 1085095, 1208761, 1341483, 1483581, 1635375, 1797185, 1969331
Offset: 1

Views

Author

Ant King, Oct 26 2012

Keywords

Examples

			The sequence of heptagonal pyramidal numbers A002413 begins 1, 8, 26, 60, 115, 196, 308, 456, 645, 880, ... . As the third odd term is 645, a(3) = 645.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{1,115,645,1911},34]

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 320.
a(n) = (2*n-1)*(4*n-3)*(20*n-17)/3.
G.f.: x*(1 + 111*x + 191*x^2 + 17*x^3)/(1-x)^4.
E.g.f.: 17 + exp(x)*(160*x^3 + 144*x^2 + 54*x - 51)/3. - Elmo R. Oliveira, Aug 23 2025

A218325 Even heptagonal pyramidal numbers.

Original entry on oeis.org

8, 26, 60, 196, 308, 456, 880, 1166, 1508, 2380, 2920, 3536, 5016, 5890, 6860, 9108, 10396, 11800, 14976, 16758, 18676, 22940, 25296, 27808, 33320, 36330, 39516, 46436, 50180, 54120, 62608, 67166, 71940, 82156, 87608, 93296, 105400, 111826, 118508, 132660
Offset: 1

Views

Author

Ant King, Oct 26 2012

Keywords

Examples

			The sequence of heptagonal pyramidal numbers A002413(n) begins 1, 8, 26, 60, 115, 196, 308, 456, 645, 880, … As the third even term is 60, then a(3) = 60.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,0,3,-3,0,-3,3,0,1,-1},{8,26,60,196,308,456,880,1166,1508,2380},40]

Formula

a(n) = a(n-1) + 3*a(n-3) - 3*a(n-4) - 3*a(n-6) + 3*a(n-7) + a(n-9) - a(n-10).
a(n) = 3*a(n-3) - 3*a(n-6) + a(n-9) + 320.
a(n) = (phi(n)+3)*(phi(n)+12)(5*phi(n)-3)/4374, where phi(n) = 12*n - 3*cos(2*n*pi/3) + sqrt(3)*sin(2*n*pi/3).
G. f. 2*x*(4+9*x+17*x^2+56*x^3+29*x^4+23*x^5+20*x^6+2*x^7) / ((1-x)^4*(1+x+x^2)^3).
Previous Showing 21-30 of 37 results. Next