cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 50 results. Next

A092328 Solutions of x^2 = ceiling(x*r*floor(x/r)) where r=Pi.

Original entry on oeis.org

0, 22, 44, 355, 710, 1065, 1420, 1775, 2130, 2485, 2840, 3195, 312689, 1146408, 5419351, 10838702
Offset: 1

Views

Author

Benoit Cloitre, Feb 14 2004

Keywords

Comments

Does limit n->infinity log(a(n))/n exist?
Notice that the entries above are either numerators of convergents to Pi (A002485) or multiples thereof. - Robert G. Wilson v, Feb 26 2004
a(23) <= 430010946591069243. - Robert G. Wilson v, Jul 19 2019
From M. F. Hasler, Sep 10 2020: (Start)
Appears to be the same as: n >= 0 such that n*tan(n) < 1, cf. A332095. Is there a counterexample?
Most terms are multiples of a smaller term: 44 = 22*2 and a(4..12) = {355, 710, 1065, 1420, 1775, 2130, 2485, 2840, 3195} = 355*{1, 2, 3, ..., 9}. See A332095 for more. (End)

Crossrefs

Programs

  • Mathematica
    Do[ If[ n^2 == Ceiling[n*3.1415926535897932346264*Floor[n/3.1415926535897932346264]], Print[n]], {n, 0, 10^8}] (* Robert G. Wilson v, Feb 26 2004 *)
  • PARI
    for(x=0,2000000,if(x^2==ceil(Pi*x*floor(x/Pi)),print1(x,",")))

Extensions

More terms from Robert G. Wilson v, Feb 26 2004

A325159 Denominators of convergents to Pi using best rational approximation whose denominator is between consecutive powers of 2: [2^n, 2^(n+1)-1], where n = 0, 1, 2, ...

Original entry on oeis.org

1, 2, 7, 14, 21, 57, 113, 226, 339, 565, 1130, 2147, 4181, 8249, 32763, 33215, 99532, 199064, 364913, 995207, 1725033, 3450066, 5175099, 15160384, 25510582, 52746197, 131002976, 209259755, 340262731, 811528438, 1963319607, 3926639214, 6701487259, 13402974518, 20104461777
Offset: 0

Views

Author

Serguei Zolotov, Apr 04 2019

Keywords

Examples

			The convergents are 3/1, 6/2, 22/7, 44/14, 66/21, 179/57, 355/113, 710/226, 1065/339, 1775/565, 3550/1130, 6745/2147, 13135/4181, 25915/8249, 102928/32763, ... = A325158/A325159.
		

Crossrefs

Cf. A325158 (numerators), A002485.

A332095 Numbers m such that 0 <= m*tan(m) < 1, ordered by |m|.

Original entry on oeis.org

0, -3, 22, 44, 355, 710, 1065, 1420, 1775, 2130, 2485, 2840, 3195, 312689, 1146408, 5419351, 10838702, -6167950454, -21053343141, -42106686282, -63160029423, -84213372564, -105266715705, -8958937768937, -17917875537874, -428224593349304, -856449186698608, -6134899525417045
Offset: 1

Views

Author

M. F. Hasler, Sep 10 2020

Keywords

Comments

Equivalently, 0 together with integers m such that |tan(m)| < 1/m, multiplied by sign(tan(m)).
The term a(2) = 3 is up to 10^7 the only term m for which tan(m) < 0.
A092328 appears to be a subsequence. Does it contain all terms with tan(m) > 0?
Many terms are multiples of a smaller term: 44 = 22*2 and a(4..12) = {355, 710, 1065, 1420, 1775, 2130, 2485, 2840, 3195} = 355*{1, 2, 3, ..., 9}.
Indeed, if |m*tan(m)| < 1/k^2 for some k = 1, 2, 3..., then (k*m)*tan(k*m) ~ k^2*m*tan(m) < 1. (E.g., for m = 355, m*tan(m) ~ 0.01.)
The "seeds" for which |m*tan(m)| is particularly small are numerators of convergents of continued fractions for Pi (A002485) (and/or Pi/2: A096456), e.g., a(3) = numerator(22/7), a(5) = numerator(355/113), ...
Other terms in the sequence include: -21053343141*{1, 2, 3, 4, 5}, -8958937768937*{1, 2}, -6134899525417045, -66627445592888887, 430010946591069243, -2646693125139304345*{1, 2, 3, 4, 5}, ...
The absolute values of nonzero terms are a subsequence of A337371. - R. J. Mathar, Sep 24 2020
Can someone find a counterexample for which |sin(m)| < 1/m and |m*tan(m)| > 1? - M. F. Hasler, Oct 09 2020

Crossrefs

Cf. A092328, A088306, A337371 (similar, with sin, a superset except for the initial term).

Programs

  • PARI
    is_A332095(n)={tan(n)*n < 1 && n*tan(n) >= 0}
    for(n=0,oo, n*abs(tan(n))<1 && print1(sign(tan(n))*n", "))
    /* Much faster: apply to numerators of convergents of Pi the function check(n) which prints all nonzero k*n in the sequence and returns the largest such k, largest in magnitude, possibly negative. N.B.: stops when (k+1)n is not in the sequence, so e.g., n = 11 (in convergents of Pi/2) does not give 22 and 44! */
    print1(0); apply( {check(n)=for(i=1,oo,abs(i*n*tan(i*n))<1||return(sign(tan(n))*(i-1)); print1(", "sign(tan(n*i))*i*n))}, contfracpnqn(c=contfrac(Pi),#c)[1,]) \\ M. F. Hasler, Oct 09 2020

A360366 a(n) is the numerator of the rational number with the smallest denominator that lies within 1/10^n of Pi.

Original entry on oeis.org

3, 22, 22, 201, 333, 355, 355, 75948, 100798, 103993, 312689, 833719, 4272943, 5419351, 58466453, 80143857, 245850922, 1068966896, 2549491779, 6167950454, 21053343141, 21053343141, 1299139324288, 1741259530249, 3587785776203, 8958937768937, 8958937768937, 130796280757852
Offset: 0

Views

Author

Stefano Spezia, Feb 04 2023

Keywords

Examples

			The rational numbers are 3, 22/7, 22/7, 201/64, 333/106, 355/113, 355/113, 75948/24175, ...
		

Crossrefs

Cf. A360367 (denominator), A360368, A360369, A360370.

Programs

  • Mathematica
    Table[Numerator[Rationalize[Pi,10^(-n)]],{n,0,27}]

A382564 Indices of records of the sequence abs((cos n)^n) starting from n = 1.

Original entry on oeis.org

1, 3, 22, 355, 5419351, 411557987, 1068966896, 2549491779
Offset: 1

Views

Author

Jwalin Bhatt, Apr 28 2025

Keywords

Comments

I conjecture that this sequence is a subsequence of the numerators of convergents to Pi (A002485).

Examples

			The first few values of abs((cos n)^n), n >= 1, are:
abs(cos(1)^1) = 0.5403023058
abs(cos(2)^2) = 0.1731781895
abs(cos(3)^3) = 0.9702769379
abs(cos(4)^4) = 0.1825425480
abs(cos(5)^5) = 0.0018365688
and the record high points are at n = 1, 3, 22, ...
		

Crossrefs

Programs

  • Mathematica
    Module[{x, y, runningMax = 0, positions = {}},
      x = Range[10^6]; y = Abs[Cos[x]^x];
      Do[If[y[[i]] > runningMax, runningMax = y[[i]]; AppendTo[positions, i]; ], {i, Length[y]}];
      positions
    ]
  • Python
    import numpy as np
    x = np.arange(1, 1+10**8)
    y = abs(np.cos(x) ** x)
    A382564 = sorted([1+int(np.where(y==m)[0][0]) for m in set(np.maximum.accumulate(y))])
    
  • Python
    from mpmath import mp
    mp.dps = 1
    running_max, A382564 = 0, []
    for n in range(1, 1+10**5):
        while ((y:=abs(mp.cos(n)**n)) == 1):
            mp.dps += 1
        if y > running_max:
            running_max = y
            A382564.append(n)

Extensions

a(6)-a(8) from Jakub Buczak, May 04 2025

A086785 Primes found among the numerators of the continued fraction rational approximations to Pi.

Original entry on oeis.org

3, 103993, 833719, 4272943, 411557987, 7809723338470423412693394150101387872685594299
Offset: 1

Views

Author

Cino Hilliard, Aug 04 2003

Keywords

Comments

The numbers listed are primes. For m <= 10000 the only occurrence where both numerator and denominator are prime is 833719/265381.
The next term has 123 digits. - Harvey P. Dale, Dec 23 2018

Examples

			The first 4 rational approximations to Pi are 3/1, 22/7, 333/106, 355/113, 103993/33102 where 3 and 103993 are primes.
		

Crossrefs

Programs

  • Mathematica
    Select[Numerator[Convergents[Pi,100]],PrimeQ] (* Harvey P. Dale, Dec 23 2018 *)
  • PARI
    \\ Continued fraction rational approximation of numeric functions
    cfrac(m,f) = x=f; for(n=0,m,i=floor(x); x=1/(x-i); print1(i,","))
    cfracnumprime(m,f) = { cf = vector(100000); x=f; for(n=0,m, i=floor(x); x=1/(x-i); cf[n+1] = i; ); for(m1=0,m, r=cf[m1+1]; forstep(n=m1,1,-1, r = 1/r; r+=cf[n]; ); numer=numerator(r); denom=denominator(r); if(isprime(numer),print1(numer,",")); ) }
    
  • PARI
    default(realprecision,10^5);
    cf=contfrac(Pi);
    n=0;
    { for(k=1, #cf,  \\ generate b-file
        pq = contfracpnqn( vector(k,j, cf[j]) );
        p = pq[1,1];  q = pq[2,1];
        if ( ispseudoprime(p), n+=1; print(n," ",p) );  \\ A086785
    \\    if ( ispseudoprime(q), n+=1; print(n," ",q) );  \\ A086788
    ); }
    /* Joerg Arndt, Apr 21 2013 */

Extensions

Corrected by Jens Kruse Andersen, Apr 20 2013
Corrected offset, Joerg Arndt, Apr 21 2013

A156020 Denominators in an infinite sum for Pi.

Original entry on oeis.org

1, 106, 877203, 2195225334, 17599271777, 360950005720, 17348726394920, 1996375977735378, 26627865341803449, 668044491303666717, 13157161331655387213, 7653283960850915182425, 3256741424583567733172850, 388712386741794886666062286, 266182386623377135274423955447
Offset: 1

Views

Author

Keywords

Comments

For k >= 0, define Q(k) = A002485(2k)/A002486(2k) (convergents to Pi that are less than Pi), so Pi = Sum_{k>=1} (Q(k) - Q(k-1)). Then a(n) is the denominator of Q(n) - Q(n-1).

Examples

			a(2) = 106 since A002485(4)/A002486(4) = 333/106, A002485(2)/A002486(2) = 3/1, and 333/106 - 3/1 = 15/106 (see table below).
Pi = 3/1 + 15/106 + 73/877203 + 1/2195225334 + 2/17599271777 + 3/360950005720 + 7/17348726394920 + ....
.
  n  Q(n) = A002485(2n)/A002486(2n)  Q(n) - Q(n-1)    a(n)
  -  ------------------------------  -------------  ------
  0       0/1     = 0                     -              -
  1       3/1     = 3                    3/1             1
  2     333/106   = 3.1415094339...     15/106         106
  3  103993/33102 = 3.1415926530...     73/877203   877203
		

Crossrefs

Cf. A002485, A002486, A156019 (numerators).

Programs

Formula

a(n) = denominator(A002485(2n)/A002486(2n) - A002485(2n-2)/A002486(2n-2)).

Extensions

More terms from Alexander R. Povolotsky, Sep 01 2009
More terms from Michel Marcus, Jan 05 2022

A156618 Denominators of Egyptian fraction for Pi-3 whose partial sums are the convergents.

Original entry on oeis.org

7, -742, 11978, -3740526, 1099482930, -2202719155, 6600663644, -26413901692, 96840976853, -496325469560, 2346251883960, -44006595799206, 1345586183756654, -4127747481719463, 10251870941174304
Offset: 0

Views

Author

Jaume Oliver Lafont, Feb 11 2009

Keywords

Comments

Numerators are all 1.

Examples

			3+1/a(0)=22/7
3+1/a(0)+1/a(1)=333/106
3+1/a(0)+1/a(1)+1/a(2)=355/113
		

Crossrefs

Programs

  • PARI
    c0=3; for (k=2,30,m=contfracpnqn(contfrac(Pi,k));c1=m[1,1]/m[2,1];print1(1/(c1-c0),", ");c0=c1;)

A337371 Integers k with abs(sin(k)) < 1/k.

Original entry on oeis.org

1, 3, 22, 44, 355, 710, 1065, 1420, 1775, 2130, 2485, 2840, 3195, 312689, 1146408, 5419351, 10838702, 6167950454, 21053343141, 42106686282, 63160029423, 84213372564, 105266715705, 8958937768937, 17917875537874, 428224593349304, 856449186698608, 6134899525417045
Offset: 1

Views

Author

Anian Brosig, Aug 25 2020

Keywords

Comments

The values > 1 appear to be a subset of the numerators of continued fractions of Pi (A002485) (and/or Pi/2: A096456) and their multiples. Is it possible to find a term k here but not in |A332095| (k |tan k| < 1)? - M. F. Hasler, Oct 09 2020

Crossrefs

Programs

  • Mathematica
    Select[Range[3200], Abs[Sin[#]] < 1/# &] (* Amiram Eldar, Aug 25 2020 *)
  • PARI
    print1(1);apply( n-> forstep(n=n,oo,n,abs(sin(n))<1/n||return; print1(","n)), contfracpnqn(c=contfrac(Pi),#c)[1,]); \\ M. F. Hasler, Oct 09 2020
  • Python
    import numpy as np
    for x in range(1, 10**9):
        if np.abs(np.sin(x)) < 1/x:
            print(x, end=", ")
    

Extensions

More terms from M. F. Hasler, Oct 09 2020

A383541 Positive numbers k such that (cos k)^k sets a new record.

Original entry on oeis.org

1, 6, 19, 22, 710, 1146408, 10838702, 80143857, 245850922, 411557987, 1068966896
Offset: 1

Views

Author

Jwalin Bhatt, Apr 29 2025

Keywords

Examples

			The first few values of (cos k)^k, k >= 1, are:
  cos(1)^1 =  0.540302305868139
  cos(2)^2 =  0.173178189568194
  cos(3)^3 = -0.97027693792150
  cos(4)^4 =  0.182542548055270
  cos(5)^5 =  0.001836568887601
  cos(6)^6 =  0.783591241730686
  cos(7)^7 =  0.138422055397017
  cos(8)^8 =  0.000000200865224
  cos(9)^9 = -0.43273721139612
and the record high points are at k = 1, 6, 19, ...
		

Crossrefs

Programs

  • Mathematica
    Module[{x, y, runningMax = 0, positions = {}},
      x = Range[1, 10^6]; y = Cos[x]^x;
      Do[If[y[[i]] > runningMax, runningMax = y[[i]]; AppendTo[positions, i]; ], {i, Length[y]}];
      positions
    ]
  • Python
    import numpy as np
    x = np.arange(1, 1+10**8)
    y = np.cos(x) ** x
    A383541 = sorted([1+int(np.where(y==m)[0][0]) for m in set(np.maximum.accumulate(y))])

Formula

Conjecture: a(n) = A002485(n+7) for n >= 9. - Jakub Buczak, May 05 2025

Extensions

a(9)-a(11) from Jakub Buczak, May 05 2025
Previous Showing 21-30 of 50 results. Next