A092328
Solutions of x^2 = ceiling(x*r*floor(x/r)) where r=Pi.
Original entry on oeis.org
0, 22, 44, 355, 710, 1065, 1420, 1775, 2130, 2485, 2840, 3195, 312689, 1146408, 5419351, 10838702
Offset: 1
-
Do[ If[ n^2 == Ceiling[n*3.1415926535897932346264*Floor[n/3.1415926535897932346264]], Print[n]], {n, 0, 10^8}] (* Robert G. Wilson v, Feb 26 2004 *)
-
for(x=0,2000000,if(x^2==ceil(Pi*x*floor(x/Pi)),print1(x,",")))
A325159
Denominators of convergents to Pi using best rational approximation whose denominator is between consecutive powers of 2: [2^n, 2^(n+1)-1], where n = 0, 1, 2, ...
Original entry on oeis.org
1, 2, 7, 14, 21, 57, 113, 226, 339, 565, 1130, 2147, 4181, 8249, 32763, 33215, 99532, 199064, 364913, 995207, 1725033, 3450066, 5175099, 15160384, 25510582, 52746197, 131002976, 209259755, 340262731, 811528438, 1963319607, 3926639214, 6701487259, 13402974518, 20104461777
Offset: 0
The convergents are 3/1, 6/2, 22/7, 44/14, 66/21, 179/57, 355/113, 710/226, 1065/339, 1775/565, 3550/1130, 6745/2147, 13135/4181, 25915/8249, 102928/32763, ... = A325158/A325159.
A332095
Numbers m such that 0 <= m*tan(m) < 1, ordered by |m|.
Original entry on oeis.org
0, -3, 22, 44, 355, 710, 1065, 1420, 1775, 2130, 2485, 2840, 3195, 312689, 1146408, 5419351, 10838702, -6167950454, -21053343141, -42106686282, -63160029423, -84213372564, -105266715705, -8958937768937, -17917875537874, -428224593349304, -856449186698608, -6134899525417045
Offset: 1
-
is_A332095(n)={tan(n)*n < 1 && n*tan(n) >= 0}
for(n=0,oo, n*abs(tan(n))<1 && print1(sign(tan(n))*n", "))
/* Much faster: apply to numerators of convergents of Pi the function check(n) which prints all nonzero k*n in the sequence and returns the largest such k, largest in magnitude, possibly negative. N.B.: stops when (k+1)n is not in the sequence, so e.g., n = 11 (in convergents of Pi/2) does not give 22 and 44! */
print1(0); apply( {check(n)=for(i=1,oo,abs(i*n*tan(i*n))<1||return(sign(tan(n))*(i-1)); print1(", "sign(tan(n*i))*i*n))}, contfracpnqn(c=contfrac(Pi),#c)[1,]) \\ M. F. Hasler, Oct 09 2020
A360366
a(n) is the numerator of the rational number with the smallest denominator that lies within 1/10^n of Pi.
Original entry on oeis.org
3, 22, 22, 201, 333, 355, 355, 75948, 100798, 103993, 312689, 833719, 4272943, 5419351, 58466453, 80143857, 245850922, 1068966896, 2549491779, 6167950454, 21053343141, 21053343141, 1299139324288, 1741259530249, 3587785776203, 8958937768937, 8958937768937, 130796280757852
Offset: 0
The rational numbers are 3, 22/7, 22/7, 201/64, 333/106, 355/113, 355/113, 75948/24175, ...
-
Table[Numerator[Rationalize[Pi,10^(-n)]],{n,0,27}]
A382564
Indices of records of the sequence abs((cos n)^n) starting from n = 1.
Original entry on oeis.org
1, 3, 22, 355, 5419351, 411557987, 1068966896, 2549491779
Offset: 1
The first few values of abs((cos n)^n), n >= 1, are:
abs(cos(1)^1) = 0.5403023058
abs(cos(2)^2) = 0.1731781895
abs(cos(3)^3) = 0.9702769379
abs(cos(4)^4) = 0.1825425480
abs(cos(5)^5) = 0.0018365688
and the record high points are at n = 1, 3, 22, ...
-
Module[{x, y, runningMax = 0, positions = {}},
x = Range[10^6]; y = Abs[Cos[x]^x];
Do[If[y[[i]] > runningMax, runningMax = y[[i]]; AppendTo[positions, i]; ], {i, Length[y]}];
positions
]
-
import numpy as np
x = np.arange(1, 1+10**8)
y = abs(np.cos(x) ** x)
A382564 = sorted([1+int(np.where(y==m)[0][0]) for m in set(np.maximum.accumulate(y))])
-
from mpmath import mp
mp.dps = 1
running_max, A382564 = 0, []
for n in range(1, 1+10**5):
while ((y:=abs(mp.cos(n)**n)) == 1):
mp.dps += 1
if y > running_max:
running_max = y
A382564.append(n)
A086785
Primes found among the numerators of the continued fraction rational approximations to Pi.
Original entry on oeis.org
3, 103993, 833719, 4272943, 411557987, 7809723338470423412693394150101387872685594299
Offset: 1
The first 4 rational approximations to Pi are 3/1, 22/7, 333/106, 355/113, 103993/33102 where 3 and 103993 are primes.
-
Select[Numerator[Convergents[Pi,100]],PrimeQ] (* Harvey P. Dale, Dec 23 2018 *)
-
\\ Continued fraction rational approximation of numeric functions
cfrac(m,f) = x=f; for(n=0,m,i=floor(x); x=1/(x-i); print1(i,","))
cfracnumprime(m,f) = { cf = vector(100000); x=f; for(n=0,m, i=floor(x); x=1/(x-i); cf[n+1] = i; ); for(m1=0,m, r=cf[m1+1]; forstep(n=m1,1,-1, r = 1/r; r+=cf[n]; ); numer=numerator(r); denom=denominator(r); if(isprime(numer),print1(numer,",")); ) }
-
default(realprecision,10^5);
cf=contfrac(Pi);
n=0;
{ for(k=1, #cf, \\ generate b-file
pq = contfracpnqn( vector(k,j, cf[j]) );
p = pq[1,1]; q = pq[2,1];
if ( ispseudoprime(p), n+=1; print(n," ",p) ); \\ A086785
\\ if ( ispseudoprime(q), n+=1; print(n," ",q) ); \\ A086788
); }
/* Joerg Arndt, Apr 21 2013 */
A156020
Denominators in an infinite sum for Pi.
Original entry on oeis.org
1, 106, 877203, 2195225334, 17599271777, 360950005720, 17348726394920, 1996375977735378, 26627865341803449, 668044491303666717, 13157161331655387213, 7653283960850915182425, 3256741424583567733172850, 388712386741794886666062286, 266182386623377135274423955447
Offset: 1
a(2) = 106 since A002485(4)/A002486(4) = 333/106, A002485(2)/A002486(2) = 3/1, and 333/106 - 3/1 = 15/106 (see table below).
Pi = 3/1 + 15/106 + 73/877203 + 1/2195225334 + 2/17599271777 + 3/360950005720 + 7/17348726394920 + ....
.
n Q(n) = A002485(2n)/A002486(2n) Q(n) - Q(n-1) a(n)
- ------------------------------ ------------- ------
0 0/1 = 0 - -
1 3/1 = 3 3/1 1
2 333/106 = 3.1415094339... 15/106 106
3 103993/33102 = 3.1415926530... 73/877203 877203
A156618
Denominators of Egyptian fraction for Pi-3 whose partial sums are the convergents.
Original entry on oeis.org
7, -742, 11978, -3740526, 1099482930, -2202719155, 6600663644, -26413901692, 96840976853, -496325469560, 2346251883960, -44006595799206, 1345586183756654, -4127747481719463, 10251870941174304
Offset: 0
3+1/a(0)=22/7
3+1/a(0)+1/a(1)=333/106
3+1/a(0)+1/a(1)+1/a(2)=355/113
-
c0=3; for (k=2,30,m=contfracpnqn(contfrac(Pi,k));c1=m[1,1]/m[2,1];print1(1/(c1-c0),", ");c0=c1;)
A337371
Integers k with abs(sin(k)) < 1/k.
Original entry on oeis.org
1, 3, 22, 44, 355, 710, 1065, 1420, 1775, 2130, 2485, 2840, 3195, 312689, 1146408, 5419351, 10838702, 6167950454, 21053343141, 42106686282, 63160029423, 84213372564, 105266715705, 8958937768937, 17917875537874, 428224593349304, 856449186698608, 6134899525417045
Offset: 1
-
Select[Range[3200], Abs[Sin[#]] < 1/# &] (* Amiram Eldar, Aug 25 2020 *)
-
print1(1);apply( n-> forstep(n=n,oo,n,abs(sin(n))<1/n||return; print1(","n)), contfracpnqn(c=contfrac(Pi),#c)[1,]); \\ M. F. Hasler, Oct 09 2020
-
import numpy as np
for x in range(1, 10**9):
if np.abs(np.sin(x)) < 1/x:
print(x, end=", ")
A383541
Positive numbers k such that (cos k)^k sets a new record.
Original entry on oeis.org
1, 6, 19, 22, 710, 1146408, 10838702, 80143857, 245850922, 411557987, 1068966896
Offset: 1
The first few values of (cos k)^k, k >= 1, are:
cos(1)^1 = 0.540302305868139
cos(2)^2 = 0.173178189568194
cos(3)^3 = -0.97027693792150
cos(4)^4 = 0.182542548055270
cos(5)^5 = 0.001836568887601
cos(6)^6 = 0.783591241730686
cos(7)^7 = 0.138422055397017
cos(8)^8 = 0.000000200865224
cos(9)^9 = -0.43273721139612
and the record high points are at k = 1, 6, 19, ...
-
Module[{x, y, runningMax = 0, positions = {}},
x = Range[1, 10^6]; y = Cos[x]^x;
Do[If[y[[i]] > runningMax, runningMax = y[[i]]; AppendTo[positions, i]; ], {i, Length[y]}];
positions
]
-
import numpy as np
x = np.arange(1, 1+10**8)
y = np.cos(x) ** x
A383541 = sorted([1+int(np.where(y==m)[0][0]) for m in set(np.maximum.accumulate(y))])
Comments