cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 78 results. Next

A002527 Number of permutations p on the set [n] with the properties that abs(p(i)-i) <= 3 for all i and p(1) <= 3.

Original entry on oeis.org

0, 1, 2, 6, 18, 60, 184, 560, 1695, 5200, 15956, 48916, 149664, 458048, 1402360, 4294417, 13149210, 40259178, 123260854, 377395940, 1155508592, 3537919648, 10832298239, 33165996032, 101546731816, 310913195800, 951945967120, 2914642812096, 8923975209168
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the permanent of the n X n matrix that has ones on its diagonal, ones on its three superdiagonals, ones on its three subdiagonals (with the exception of a single zero in the (4,1)-entry), and is zero elsewhere.
This is the second row of Kløve's Table 3.

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    with(LinearAlgebra):
    A002527:= n-> `if`(n=0, 0, Permanent(Matrix(n, (i, j)->
                  `if`(abs(j-i)<4 and [i, j]<>[4, 1], 1, 0)))):
    seq(A002527(n), n=0..20);
  • Mathematica
    A002527[n_] := If [n == 0, 0, Permanent[Table[If [Abs[j-i]<4 && {i, j} != {4, 1}, 1, 0], {i, 1, n}, {j, 1, n}]]]; Table [A002527[n], {n, 0, 25}] (* Jean-François Alcover, Mar 11 2014, after Maple *)

Formula

From Nathaniel Johnston, Apr 03 2011: (Start)
a(n) = A002526(n) - A188379(n-1).
a(n) = a(n-1) + A002526(n-1) + A002529(n-1). (End)
G.f.: x*(x^7+2*x^6-2*x^4-2*x^3-1) / (x^14 +2*x^13 +2*x^11 +4*x^10 -2*x^9 -10*x^8 -16*x^7 -2*x^6 +8*x^5 +10*x^4 +2*x^2 +2*x-1). - Alois P. Heinz, Apr 07 2011

Extensions

Name and comments edited, and terms after a(11) added by Nathaniel Johnston, Apr 03 2011

A079962 Number of permutations satisfying -k <= p(i) - i <= r and p(i) - i not in I, i=1..n, with k=1, r=5, I={1,3}.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 9, 14, 22, 36, 58, 94, 153, 247, 399, 646, 1045, 1691, 2737, 4428, 7164, 11592, 18756, 30348, 49105, 79453, 128557, 208010, 336567, 544577, 881145, 1425722, 2306866, 3732588, 6039454, 9772042, 15811497, 25583539, 41395035
Offset: 0

Views

Author

Vladimir Baltic, Feb 19 2003

Keywords

Comments

Number of compositions (ordered partitions) of n into elements of the set {1,3,5,6}. - Mark Dols, Aug 20 2010

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.

Crossrefs

Programs

  • Magma
    [Round(Fibonacci(n+3)/4): n in [0..40]]; // G. C. Greubel, Jan 21 2022
    
  • Maple
    with(combinat,fibonacci): seq(round(fibonacci(n+3)/4),n=0..38) # Mircea Merca, Jan 04 2011
  • Mathematica
    LinearRecurrence[{1,0,1,0,1,1}, {1,1,1,2,3,5}, 41] (* G. C. Greubel, Jan 21 2022 *)
  • PARI
    a(n)=fibonacci(n+3)\/4 \\ Charles R Greathouse IV, Oct 07 2015
    
  • Sage
    [(1/4)*(fibonacci(n+3) + chebyshev_U(n,1/2) + chebyshev_U(2*n,1/2)) for n in (0..40)] # G. C. Greubel, Jan 21 2022

Formula

a(n) = a(n-1) + a(n-3) + a(n-5) + a(n-6).
G.f.: 1/((1+x+x^2)*(1-x+x^2)*(1-x-x^2)).
a(n+1)/a(n) -> golden ratio A001622. - Roger L. Bagula, Mar 13 2006
a(n) + a(n+2) + a(n+4) = Fibonacci(n+5). - Mark Dols, Aug 20 2010
a(n) = round(Fibonacci(n+3)/4). - Mircea Merca, Jan 04 2011
a(n+6) - a(n) = A000045(n+6). - Paul Curtz, Jun 29 2013
a(n) + a(n+1) + a(n+2) = A024490(n+6). - R. J. Mathar, Jun 30 2013
a(n) - a(n-1) + a(n-2) = A094686(n). - R. J. Mathar, Jun 30 2013
4*a(n) = A057078(n) + A010892(n) + A000045(n+3). - R. J. Mathar, Nov 02 2016

A224808 Number of permutations (p(1), p(2), ..., p(n)) satisfying -k <= p(i)-i <= r and p(i)-i not in the set I, i=1..n, with k=2, r=6, I={-1,1,2,3,4,5}.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 4, 6, 9, 12, 16, 20, 25, 35, 49, 70, 100, 140, 196, 266, 361, 494, 676, 936, 1296, 1800, 2500, 3450, 4761, 6555, 9025, 12445, 17161, 23711, 32761, 45250, 62500, 86250, 119025, 164220, 226576, 312732, 431649, 595899, 822649, 1135564, 1567504, 2163456, 2985984
Offset: 0

Views

Author

Vladimir Baltic, Apr 18 2013

Keywords

Comments

a(n) is the number of subsets of {1,2,...,n-6} without differences equal to 2, 4 or 6.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - x^5 - x^8)/(1 - x - x^5 + x^6 - x^7 - 2*x^8 + x^9 - x^10 + x^13 + x^16), {x, 0, 50}], x] (* G. C. Greubel, Oct 28 2017 *)
    LinearRecurrence[{1,0,0,0,1,-1,1,2,-1,1,0,0,-1,0,0,-1},{1,1,1,1,1,1,1,2,4,6,9,12,16,20,25,35},60] (* Harvey P. Dale, Dec 02 2024 *)
  • PARI
    x='x+O('x^66); Vec((1-x^5-x^8)/(1-x-x^5+x^6-x^7-2*x^8+x^9-x^10+x^13+x^16) ) \\ Joerg Arndt, Apr 19 2013

Formula

a(n) = a(n-1) + a(n-5) - a(n-6) + a(n-7) + 2*a(n-8) - a(n-9) + a(n-10) - a(n-13) + a(n-16).
G.f.: (1-x^5-x^8)/(1-x-x^5+x^6-x^7-2*x^8+x^9-x^10+x^13+x^16).
a(2*k-2) = (A003269(k))^2,
a(2*k-1) = A003269(k) * A003269(k+1)

A006500 Restricted combinations.

Original entry on oeis.org

1, 2, 4, 8, 12, 18, 27, 45, 75, 125, 200, 320, 512, 832, 1352, 2197, 3549, 5733, 9261, 14994, 24276, 39304, 63580, 102850, 166375, 269225, 435655, 704969, 1140624, 1845504, 2985984, 4831488, 7817616, 12649337, 20466953, 33116057, 53582633
Offset: 0

Views

Author

Keywords

Comments

a(n)=( A000045(k+2) )^3 if n=3k, a(n)=( A000045(k+2) )^3 * A000045(k+3) if n=3k+1, a(n)= A000045(k+2) * ( A000045(k+3) )^2 if n=3k+2. Number of all subsets of the set {1,2,...,n} which do not contain two elements whose difference is 3. a(n) is number of compositions of n+3 into elements of the set {1,2,4,5,6}, but with condition that 2 succeed only 2 or 4. Number of all permutations of {1,2,...,n+3} satisfying p(i)-i in {-3,0,3}. - Vladimir Baltic, Feb 17 2003

Examples

			For example, a_4=12 and 12 subsets are: emptyset, {1}, {2}, {3}, {4}, {1,2}, {1,3}, {2,3}, {2,4}, {3,4}, {1,2,3}, {2,3,4}. Corresponding compositions of 7=4+3 are: 1+1+1+1+1+1+1+1, 4+1+1+1, 1+4+1+1, 1+1+4+1, 1+1+1+4, 5+1+1, 4+2+1, 1+5+1, 1+4+2, 1+1+5, 6+1 and 1+6.
		

References

  • M. El-Mikkawy, T. Sogabe, A new family of k-Fibonacci numbers, Appl. Math. Comput. 215 (2010) 4456-4461 doi:10.1016/j.amc.2009.12.069, Table 1 k=3.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A006500:=-(2*z**6+z**7-z**4+z**5-3*z**3-z**2-z-1)/(z**6-z**3-1)/(z**2+z-1); # Conjectured by Simon Plouffe in his 1992 dissertation.
  • Mathematica
    Table[Fibonacci[Floor[n/3] + 3]^Mod[n, 3] * Fibonacci[Floor[n/3] + 2]^(3 - Mod[n, 3]), {n, 0, 40}]  (* David Nacin, Feb 29 2012 *)
    Table[Product[Fibonacci[Floor[(n + i)/3] + 2], {i, 0, 2}], {n, 0, 30}] (* David Nacin, Mar 07 2012 *)
    LinearRecurrence[{1, 1, -1, 1, 1, 1, -1, -1}, {1, 2, 4, 8, 12, 18, 27, 45}, 40] (* David Nacin, Mar 07 2012 *)
  • Python
    def a(n, adict={0:1, 1:2, 2:4, 3:8, 4:12, 5:18, 6:27, 7:45}):
        if n in adict:
            return adict[n]
        adict[n]=a(n-1)+a(n-2)-a(n-3)+a(n-4)+a(n-5)+a(n-6)-a(n-7)-a(n-8)
        return adict[n] # David Nacin, Mar 07 2012

Formula

Recurrence: a(n) = a(n-1)+a(n-2)-a(n-3)+a(n-4)+a(n-5)+a(n-6)-a(n-7)-a(n-8) G.f.: -(x^7+2*x^6+x^5-x^4-3*x^3-x^2-x-1)/(x^8+x^7-x^6-x^5-x^4+x^3-x^2-x+1). - Vladimir Baltic, Feb 17 2003
a(n) = F(floor(n/3) + 3)^(n mod 3)*F(floor(n/3) + 2)^(3 - (n mod 3)) where F(n) is the n-th Fibonacci number. - David Nacin, Feb 29 2012

A224809 Number of permutations (p(1), p(2), ..., p(n)) satisfying -k <= p(i)-i <= r and p(i)-i not in the set I, i=1..n, with k=2, r=4, I={-1,1,2,3}.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 4, 6, 9, 12, 16, 24, 36, 54, 81, 117, 169, 247, 361, 532, 784, 1148, 1681, 2460, 3600, 5280, 7744, 11352, 16641, 24381, 35721, 52353, 76729, 112462, 164836, 241570, 354025, 518840, 760384, 1114416, 1633284
Offset: 0

Views

Author

Vladimir Baltic, May 16 2013

Keywords

Comments

Number of subsets of {1,2,...,n-4} without differences equal to 2 or 4.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-(x-1)*(1+x+x^2)/((x^3+x-1)*(x^6-x^4-1)), {x, 0, 50}], x] (* G. C. Greubel, Apr 28 2017 *)
  • PARI
    N = 42; x = 'x + O('x^N);
    Vec(Ser(-(x-1)*(1+x+x^2)/((x^3+x-1)*(x^6-x^4-1))))  \\ Gheorghe Coserea, Nov 11 2016

Formula

a(n) = a(n-1) + a(n-3) - a(n-4) + a(n-5) + a(n-6) - a(n-9).
G.f.: -(x-1)*(1+x+x^2) / ( (x^3+x-1)*(x^6-x^4-1) ).
a(2*k) = (A000930(k))^2, a(2*k+1) = A000930(k) * A000930(k+1).

A079997 Number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=3, r=3, I={0}.

Original entry on oeis.org

1, 0, 1, 2, 9, 24, 57, 140, 376, 1016, 2692, 7020, 18369, 48344, 127465, 335510, 882081, 2319136, 6100393, 16049440, 42220168, 111053856, 292109320, 768373144, 2021186393, 5316647448, 13985104873, 36786882378, 96765680857, 254536684328
Offset: 0

Views

Author

Vladimir Baltic, Feb 17 2003

Keywords

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,3,0,6,10,0,-12,-10,-2,0,0,-1,1,1},{1,0,1,2,9,24,57,140,376,1016,2692,7020,18369,48344},40] (* Harvey P. Dale, Nov 27 2013 *)

Formula

a(n) = a(n-1)+3*a(n-2)+6*a(n-4)+10*a(n-5)-12*a(n-7)-10*a(n-8)-2*a(n-9)-a(n-12)+a(n-13)+a(n-14)
G.f.: -(x^8+x^7-x^5-2*x^4+x^3-2*x^2-x+1)/(x^14 +x^13 -x^12 -2*x^9 -10*x^8 -12*x^7 +10*x^5 +6*x^4 +3*x^2 +x-1).

A072852 Number of permutations satisfying i-2<=p(i)<=i+5, i=1..n.

Original entry on oeis.org

1, 2, 6, 18, 54, 162, 454, 1267, 3613, 10344, 29572, 84436, 240868, 686884, 1959636, 5592181, 15957717, 45533682, 129922090, 370708166, 1057755082, 3018154342, 8611878218, 24572725639, 70114579881, 200061418144, 570845362600
Offset: 1

Views

Author

Vladimir Baltic, Jul 25 2002

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-(x^14+x^12+x^10+x^8-6x^7-x^6-4x^5-3x^4-2x^3-x^2+1)/(x^21+x^20+ x^17+x^16- 10x^14-10x^13-4x^12-6x^10- 6x^9-4x^8+28x^7+22x^6+ 13x^5+7x^4+4x^3+ 2x^2+x-1),{x,0,30}],x] (* or *) LinearRecurrence[{1,2,4,7,13,22,28,-4,-6,-6,0,-4,-10,-10,0,1,1,0,0,1,1},{1,1,2,6,18,54,162,454,1267,3613,10344,29572,84436,240868,686884,1959636,5592181,15957717,45533682,129922090,370708166},30] (* Harvey P. Dale, Jul 28 2024 *)

Formula

Recurrence: a(n) = a(n - 1) + 2*a(n - 2) + 4*a(n - 3) + 7*a(n - 4) + 13*a(n - 5) + 22*a(n - 6) + 28*a(n - 7) - 4*a(n - 8) - 6*a(n - 9) - 6*a(n - 10) - 4*a(n - 12) - 10*a(n - 13) - 10*a(n - 14) + a(n - 16) + a(n - 17) + a(n - 20) + a(n - 21). G.f.: - (x^14 + x^12 + x^10 + x^8 - 6*x^7 - x^6 - 4*x^5 - 3*x^4 - 2*x^3 - x^2 + 1)/(x^21 + x^20 + x^17 + x^16 - 10*x^14 - 10*x^13 - 4*x^12 - 6*x^10 - 6*x^9 - 4*x^8 + 28*x^7 + 22*x^6 + 13*x^5 + 7*x^4 + 4*x^3 + 2*x^2 + x - 1);

A072853 Number of permutations satisfying i-2<=p(i)<=i+6, i=1..n.

Original entry on oeis.org

1, 2, 6, 18, 54, 162, 486, 1394, 3991, 11593, 33772, 98320, 286072, 831952, 2418664, 7030816, 20441944, 59441521, 172843609, 502580846, 1461344622, 4249102850, 12354982862, 35924300898, 104456501102, 303726483778, 883140022543
Offset: 1

Views

Author

Vladimir Baltic, Jul 25 2002

Keywords

Crossrefs

Formula

Recurrence: a(n)= a(n - 1) + 2*a(n - 2) + 4*a(n - 3) + 8*a(n - 4) + 14*a(n - 5) + 26*a(n - 6) + 44*a(n - 7) + 56*a(n - 8) - 11*a(n - 9) - 19*a(n - 10) - 28*a(n - 11) - 28*a(n - 12) - 8*a(n - 14) - 20*a(n - 15) - 20*a(n - 16) + 5*a(n - 18) + 11*a(n - 19) + 10*a(n - 20) + 2*a(n - 23) + 2*a(n - 24) - a(n - 27) - a(n - 28).
G.f.: - (x^20 + x^18 - 2*x^16 - 2*x^14 - 6*x^12 - 2*x^11 - 4*x^10 - 4*x^9 + 12*x^8 + 2*x^7 + 8*x^6 + 6*x^5 + 4*x^4 + 2*x^3 + x^2 - 1)/(x^28 + x^27 - 2*x^24 - 2*x^23 - 10*x^20 - 11*x^19 - 5*x^18 + 20*x^16 + 20*x^15 + 8*x^14 + 28*x^12 + 28*x^11 + 19*x^10 + 11*x^9 - 56*x^8 - 44*x^7 - 26*x^6 - 14*x^5 - 8*x^4 - 4*x^3 - 2*x^2 - x + 1).

A072854 Number of permutations satisfying i-3<=p(i)<=i+4, i=1..n.

Original entry on oeis.org

1, 2, 6, 24, 96, 330, 1066, 3451, 11581, 39264, 132784, 446460, 1497108, 5023696, 16878488, 56739141, 190697893, 640763258, 2152824662, 7233281108, 24304468132, 81666680202, 274410023170, 922040339607, 3098121457769
Offset: 1

Views

Author

Vladimir Baltic, Jul 25 2002

Keywords

Crossrefs

Formula

Recurrence: a(n) = 3*a(n - 2) + 10*a(n - 3) + 24*a(n - 4) + 58*a(n - 5) + 128*a(n - 6) + 226*a(n - 7) + 164*a(n - 8) + 66*a(n - 9) + 8*a(n - 10) + 50*a(n - 11) - 72*a(n - 12) - 374*a(n - 13) - 640*a(n - 14) - 630*a(n - 15) - 518*a(n - 16) - 390*a(n - 17) - 426*a(n - 18) - 466*a(n - 19) - 216*a(n - 20) + 94*a(n - 21) + 48*a(n - 22) + 22*a(n - 23) + 52*a(n - 24) + 38*a(n - 25) + 48*a(n - 26) + 22*a(n - 27) - 8*a(n - 28) - 2*a(n - 29) - 2*a(n - 31) - a(n - 32) - 2*a(n - 33) - a(n - 34).
G.f.: - (x^27 + x^26 + x^25 - x^24 + 4*x^22 + 4*x^21 - 16*x^20 - 23*x^19 - 29*x^18 + x^17 - 3*x^16 - 20*x^15 - 8*x^14 + 44*x^13 + 56*x^12 + 79*x^11 + 67*x^10 + 63*x^9 + 69*x^8 + 76*x^7 + 36*x^6 + 24*x^5 + 16*x^4 + 7*x^3 + x^2 - x - 1)/(x^34 + 2*x^33 + x^32 + 2*x^31 + 2*x^29 + 8*x^28 - 22*x^27 - 48*x^26 - 38*x^25 - 52*x^24 - 22*x^23 - 48*x^22 - 94*x^21 + 216*x^20 + 466*x^19 + 426*x^18 + 390*x^17 + 518*x^16 + 630*x^15 + 640*x^14 + 374*x^13 + 72*x^12 - 50*x^11 - 8*x^10 - 66*x^9 - 164*x^8 - 226*x^7 - 128*x^6 - 58*x^5 - 24*x^4 - 10*x^3 - 3*x^2 + 1).

A072855 Number of permutations satisfying i-3<=p(i)<=i+5, i=1..n.

Original entry on oeis.org

1, 2, 6, 24, 96, 384, 1374, 4718, 16275, 57749, 206756, 739780, 2637348, 9378840, 33318804, 118439044, 421340612, 1499388117, 5335199213, 18980987054, 67522942850, 240204885524, 854523535096, 3040023558788, 10815153542594
Offset: 1

Views

Author

Vladimir Baltic, Jul 25 2002

Keywords

Crossrefs

Formula

G.f.: -(1- 2*x^2 - 7*x^3 - 16*x^4 - 28*x^5 - 32*x^6 - 58*x^7 - 156*x^8 + 67*x^9 + 76*x^10 + 68*x^11 + 145*x^12 + 12*x^13 + 156*x^14 + 180*x^15 + 704*x^16 + 344*x^17 - 454*x^18 - 276*x^19 - 480*x^20 + 158*x^21 - 260*x^22 - 116*x^23 - 780*x^24 - 756*x^25 + 168*x^26 + 206*x^27 + 900*x^28 - 340*x^29 + 126*x^30 + 132*x^31 + 276*x^32 + 28*x^33 + 16*x^34 + 24*x^35 - 107*x^36 + 36*x^37 - 14*x^38 - 7*x^39 - 28*x^40 - 4*x^42 - 2*x^43 + 4*x^44 - x^45 + x^48) / (-1 + x + 3*x^2 + 8*x^3 + 20*x^4 + 46*x^5 + 114*x^6 + 242*x^7 + 354*x^8 - 250*x^9 - 490*x^10 - 660*x^11 - 496*x^12 - 24*x^13 - 1242*x^14 - 2430*x^15 - 2270*x^16 - 566*x^17 + 2241*x^18 + 5071*x^19 + 4259*x^20 - 632*x^21 + 1392*x^22 + 6396*x^23 + 5596*x^24 - 132*x^25 + 1316*x^26 - 6220*x^27 - 11116*x^28 + 736*x^29 + 344*x^30 - 5128*x^31 - 3684*x^32 + 1148*x^33 - 388*x^34 + 980*x^35 + 1665*x^36 + 239*x^37 - 199*x^38 + 688*x^39 + 540*x^40 - 106*x^41 + 50*x^42 - 78*x^43 - 102*x^44 - 58*x^45 + 22*x^46 - 44*x^47 - 40*x^48 - 2*x^50 + 2*x^51 + 2*x^52 + 2*x^53 - x^54 + x^55 + x^56). - Vaclav Kotesovec, Dec 01 2012
Previous Showing 11-20 of 78 results. Next