cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A274905 Largest prime factor of 8^n + 1.

Original entry on oeis.org

2, 3, 13, 19, 241, 331, 109, 5419, 673, 87211, 1321, 20857, 38737, 22366891, 14449, 18837001, 22253377, 43691, 279073, 160465489, 4562284561, 77158673929, 4327489, 168749965921, 487824887233, 1133836730401, 21841, 272010961, 88959882481, 96076791871613611
Offset: 0

Views

Author

Vincenzo Librandi, Jul 11 2016

Keywords

Crossrefs

Cf. similar sequences listed in A274903.

Programs

  • Magma
    [Maximum(PrimeDivisors(8^n+1)): n in [0..40]];
  • Maple
    8^4 + 1 = 4097 = 17*241, so a(4) = 241.
  • Mathematica
    Table[FactorInteger[8^n + 1][[-1, 1]], {n, 0, 40}]

Formula

a(n) = A006530(A062395(n)). - Michel Marcus, Jul 11 2016
a(n) = A002587(3*n). - Amiram Eldar, Feb 02 2020

Extensions

Terms to a(100) in b-file from Vincenzo Librandi, Jul 12 2016
a(101)-a(354) in b-file from Amiram Eldar, Feb 02 2020
a(355)-a(502) in b-file from Max Alekseyev, May 28 2022, Sep 06 2022, Feb 25 2023

A227575 Largest prime factor of 7^n + 1.

Original entry on oeis.org

2, 2, 5, 43, 1201, 191, 181, 911, 169553, 117307, 4021, 10746341, 1201, 228511817, 13564461457, 6568801, 47072139617, 29078814248401, 13841169553, 4058036683, 810221830361, 309079, 83960385389, 3421093417510114543, 33232924804801, 79787519018560501
Offset: 0

Views

Author

Michel Marcus, Aug 22 2013

Keywords

Examples

			7^12 + 1 = 2*73*193*409*1201, so a(12) = 1201.
		

Crossrefs

Programs

  • Magma
    [Maximum(PrimeDivisors(7^n+1)): n in [0..30]]; // Bruno Berselli, Aug 23 2013
  • Mathematica
    Table[FactorInteger[7^n + 1][[-1, 1]], {n, 0, 30}] (* Bruno Berselli, Aug 23 2013 *)
  • PARI
    a(n) = f = factor(7^n + 1); f[#f~, 1]; \\ Michel Marcus, Aug 22 2013
    

Formula

a(n) = A006530(A034491(n)). - Vincenzo Librandi, Jul 12 2016

Extensions

Terms to a(100) in b-file from Vincenzo Librandi, Jul 12 2016
a(101)-a(372) in b-file from Amiram Eldar, Feb 02 2020
a(373)-a(387) in b-file from Max Alekseyev, Apr 25 2022, Aug 30 2023

A002590 Largest prime factor of 16^n + 1.

Original entry on oeis.org

2, 17, 257, 241, 65537, 61681, 673, 15790321, 6700417, 38737, 4278255361, 2931542417, 22253377, 308761441, 54410972897, 4562284561, 67280421310721, 2879347902817, 487824887233, 24517014940753, 44479210368001, 88959882481
Offset: 0

Views

Author

Keywords

References

  • J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
  • M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 2, p. 88.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    Join[{1},Table[FactorInteger[16^n+1][[-1,1]],{n,25}]] (* Harvey P. Dale, Feb 26 2012 *)

Formula

a(n) = A002587(4*n).

Extensions

More terms from Don Reble, Nov 14 2006
a(0) corrected by Sean A. Irvine, Apr 20 2014

A366720 Largest prime factor of 12^n+1.

Original entry on oeis.org

2, 13, 29, 19, 233, 19141, 20593, 13063, 260753, 1801, 85403261, 57154490053, 2227777, 222379, 13156924369, 35671, 1200913648289, 66900193189411, 122138321401, 905265296671, 67657441, 1885339, 68368660537, 49489630860836437, 592734049, 438472201
Offset: 0

Views

Author

Sean A. Irvine, Oct 17 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[12^n + 1][[-1, 1]], {n, 0, 20}]

Formula

a(n) = A006530(A178248(n)). - Paul F. Marrero Romero, Dec 07 2023

A283657 Numbers m such that 2^m + 1 has at most 2 distinct prime factors.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 19, 20, 23, 28, 31, 32, 40, 43, 61, 64, 79, 92, 101, 104, 127, 128, 148, 167, 191, 199, 256, 313, 347, 356, 596, 692, 701, 1004, 1228, 1268, 1709, 2617, 3539, 3824, 5807, 10501, 10691, 11279, 12391, 14479
Offset: 1

Views

Author

Vladimir Shevelev, Mar 13 2017

Keywords

Comments

Using comment in A283364, note that if a(n) is odd > 9, then it is prime.
503 <= a(41) <= 596. - Robert Israel, Mar 13 2017
Could (4^p + 1)/5^t be prime, where p is prime, 5^t is the highest power of 5 dividing 4^p + 1, other than for p=2, 3 and 5? - Vladimir Shevelev, Mar 14 2017
In his message to seqfans from Mar 15 2017, Jack Brennen beautifully proved that there are no more primes of such form. From his proof one can see also that there are no terms of the form 2*p > 10 in the sequence. - Vladimir Shevelev, Mar 15 2017
Where A046799(n)=2. - Robert G. Wilson v, Mar 15 2017
From Giuseppe Coppoletta, May 16 2017: (Start)
The only terms that are not in A066263 are those m giving 2^m + 1 = prime (i.e. m = 0 and any number m such that 2^m + 1 is a Fermat prime) and the values of m giving 2^m + 1 = power of a prime, giving m = 3 as the only possible case (by Mihăilescu-Catalan's result, see links).
For the relation with Fermat numbers and for other possible terms to check, see comments in A073936 and A066263.
All terms after a(59) refer to probabilistic primality tests for 2^a(n) + 1 (see Caldwell's link for the list of the largest certified Wagstaff primes).
After a(65), the values 267017, 269987, 374321, 986191, 4031399 and 4101572 are also terms, but there still remains the remote possibility of some gaps in between. In addition, 13347311 and 13372531 are also terms, but possibly much further along in the numbering (see comments in A000978).
(End).

Examples

			0 is a term as 2^0 + 1 = 2 is a prime.
10 is a term as 2^10 + 1 = 5^2 * 41.
14 is not a term as 2^14 + 1 = 5 * 29 * 113.
		

Crossrefs

Programs

  • Maple
    # this uses A002587[i] for i<=500, e.g., from the b-file for that sequence
    count:= 0:
    for i from 0 to 500 do
      m:= 0;
      r:= (2^i+1);
      if i::odd then
        m:= 1;
        r:= r/3^padic:-ordp(r,3);
      elif i > 2 then
        q:= max(numtheory:-factorset(i));
        if q > 2 then
          m:= 1;
          r:= r/B[i/q]^padic:-ordp(r,A002587[i/q]);
        fi
      fi;
      if r mod B[i] = 0 then m:= m+1;
          j:= padic:-ordp(r, A002587[i]);
          r:= r/B[i]^j;
      fi;
      mmax:= m;
      if isprime(r) then m:= m+1; mmax:= m
      elif r > 1 then mmax:= m+2
      fi;
      if mmax <= 2 or (m <= 1 and m + nops(numtheory:-factorset(r)) <= 2) then
           count:= count+1;
         A[count]:= i;
      fi
    od:
    seq(A[i],i=1..count); # Robert Israel, Mar 13 2017
  • Mathematica
    Select[Range[0, 313], PrimeNu[2^# + 1]<3 &] (* Indranil Ghosh, Mar 13 2017 *)
  • PARI
    for(n=0, 313, if(omega(2^n + 1)<3, print1(n,", "))) \\ Indranil Ghosh, Mar 13 2017

Extensions

a(16)-a(38) from Peter J. C. Moses, Mar 13 2017
a(39)-a(40) from Robert Israel, Mar 13 2017
a(41)-a(65) from Giuseppe Coppoletta, May 08 2017

A271314 Largest prime factor of the n-th Jacobsthal number, A001045(n).

Original entry on oeis.org

3, 5, 11, 7, 43, 17, 19, 31, 683, 13, 2731, 127, 331, 257, 43691, 73, 174763, 41, 5419, 683, 2796203, 241, 4051, 8191, 87211, 127, 3033169, 331, 715827883, 65537, 20857, 131071, 86171, 109, 25781083, 524287, 22366891, 61681, 8831418697, 5419, 2932031007403, 2113, 18837001
Offset: 3

Views

Author

Altug Alkan, Apr 03 2016

Keywords

Comments

a(22) = 683 is the first repeated term in this sequence. Note that a(n+2) = A129738(n), for n < 20.

Examples

			a(6) = 7 because A001045(6) = 21 = 3*7.
		

Crossrefs

Essentially a combination of A005420 and A002587.

Programs

  • Mathematica
    FactorInteger[#][[-1, 1]] & /@ Take[#, -(Length@ # - 3)] &@ CoefficientList[Series[x/(1 - x - 2 x^2), {x, 0, 45}], x] (* Michael De Vlieger, Apr 04 2016, after Robert G. Wilson v at A001045 *)
  • PARI
    a001045(n) = (2^n - (-1)^n) / 3;
    a(n) = vecmax(factor(a001045(n))[,1]);

A324941 Largest prime factor of 17^n + 1.

Original entry on oeis.org

2, 3, 29, 13, 41761, 101, 83233, 22796593, 184417, 5653, 63541, 87415373, 72337, 2001793, 100688449, 238212511, 52548582913, 45957792327018709121, 382069, 20352763, 1186844128302568601, 88109799136087, 6901823633, 1109309383381084655697725873, 48661191868691111041
Offset: 0

Views

Author

Vincenzo Librandi, Apr 05 2019

Keywords

Crossrefs

Programs

  • Magma
    [Maximum(PrimeDivisors(17^n + 1)): n in [0..40]];
    
  • Mathematica
    Table[FactorInteger[17^n + 1] [[-1,1]], {n, 0, 30}]
  • PARI
    a(n) = vecmax(factor(17^n+1)[, 1]); \\ Jinyuan Wang, Apr 05 2019

Formula

a(n) = A006530(A224384(n)).

A337431 Numbers k such that the largest prime factor of 2^k - 1 is greater than the largest prime factor of 2^k + 1.

Original entry on oeis.org

3, 5, 7, 9, 13, 14, 17, 19, 26, 27, 31, 33, 34, 35, 37, 46, 49, 51, 59, 61, 62, 65, 69, 74, 77, 78, 82, 83, 86, 89, 93, 97, 103, 107, 115, 118, 121, 122, 123, 127, 129, 130, 131, 133, 137, 141, 142, 143, 144, 145, 147, 150, 153, 154, 165, 166, 169, 170, 174, 175
Offset: 1

Views

Author

Hugo Pfoertner, Sep 23 2020

Keywords

Crossrefs

Cf. A002587, A005420, A337430 (complement).

Programs

  • PARI
    for(n=2,175,my(p=vecmax(factor(2^n-1)[,1]),q=vecmax(factor(2^n+1)[,1]));if(p>q,print1(n,", ")))

A070314 a(n) = P(n!+1)-P(2^n+1) where P(x) is the largest prime factor in x.

Original entry on oeis.org

0, -1, -2, 4, -12, 0, 90, 28, 404, 250, 329850, 39916118, 2834088, 75021616, 3790360374, 46271010, 993974, 956666, 123610842, 1713311273189068, 117876621366, 2703875810364, 93799610095767534, 148139754734068388, 765041185860961083618, 38681321803817920155550
Offset: 0

Views

Author

Benoit Cloitre, May 12 2002

Keywords

Comments

Is it always true that a(n) > 0 for n > 5? More generally, if m is an integer > 2, is there always an integer f(m) such that P(n!+1) > P(m^n+1) for n > f(m) (it seems that f(2) = 5, f(3) = 7, f(4) = 17, ...).

Crossrefs

Programs

  • Mathematica
    gpf[n_] := FactorInteger[n][[-1,1]]; a[n_] := gpf[n!+1] - gpf[2^n+1]; Array[a, 26, 0] (* Amiram Eldar, Apr 23 2025 *)

Formula

a(n) = A002583(n) - A002587(n). - Amiram Eldar, Apr 23 2025

Extensions

Offset changed to 0 and a(0) prepended by Amiram Eldar, Apr 23 2025

A158895 A list of primes written in order of their first appearance in a table of prime factorizations of 2^k+1, k=1,2,... .

Original entry on oeis.org

3, 5, 17, 11, 13, 43, 257, 19, 41, 683, 241, 2731, 29, 113, 331, 65537, 43691, 37, 109, 174763, 61681, 5419, 397, 2113, 2796203, 97, 673, 251, 4051, 53, 157, 1613, 87211, 15790321, 59, 3033169, 61, 1321, 715827883
Offset: 1

Views

Author

Martin Griffiths, Mar 29 2009

Keywords

Comments

This sequence has the property that if a(n) appears first in the table as a prime factor of 2^m+1 for some m then a(n)=2*k*m+1 for some k.
When, for some m, 2^m+1 has more than one prime factor appearing in the table for the first time, we adopt the convention of entering them in ascending order. For example, the entries ..., 29, 113, ... both arise from 2^14+1.

Examples

			2^1+1=3, 2^2+1=5, 2^3+1=3^2 and 2^4+1=17. Thus a(1)=3, a(2)=5 and a(3)=17, on noting that 2^3+1 contributes no new prime factors.
		

Crossrefs

Subsequence of A001269.

Programs

  • Mathematica
    DeleteDuplicates[Flatten[Table[Transpose[FactorInteger[2^k+1]][[1]],{k,50}]]] (* Harvey P. Dale, Mar 30 2014 *)
  • PARI
    lista(n)=prs = Set(); for (k=1, n, f = factor(2^k+1); for (i=1, length(f~), onef = f[i,1]; if (! setsearch(prs, onef), print1(onef, ", "); prs = setunion(prs, Set(onef));););); \\ Michel Marcus, Apr 18 2013
    
  • PARI
    G=1; for(n=1,500, g=gcd(f=2^n+1,G); while(g>1, g=gcd(g,f/=g)); f=factor(f)[,1]; if(#f, for(i=1,#f, print1(f[i]", ")); G*=factorback(f))) \\ Charles R Greathouse IV, Jan 03 2018
Previous Showing 11-20 of 23 results. Next