cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 135 results. Next

A111006 Another version of Fibonacci-Pascal triangle A037027.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 0, 2, 3, 0, 0, 1, 5, 5, 0, 0, 0, 3, 10, 8, 0, 0, 0, 1, 9, 20, 13, 0, 0, 0, 0, 4, 22, 38, 21, 0, 0, 0, 0, 1, 14, 51, 71, 34, 0, 0, 0, 0, 0, 5, 40, 111, 130, 55, 0, 0, 0, 0, 0, 1, 20, 105, 233, 235, 89, 0, 0, 0, 0, 0, 0, 6, 65, 256, 474, 420, 144
Offset: 0

Views

Author

Philippe Deléham, Oct 02 2005

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, -1, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.
Row sums are the Jacobsthal numbers A001045(n+1) and column sums form Pell numbers A000129.
Maximal column entries: A038149 = {1, 1, 2, 5, 10, 22, ...}.
T(n,k) gives a convolved Fibonacci sequence (A001629, A001872, ...).
Triangle read by rows: T(n,n-k) is the number of ways to tile a 2 X n rectangle with k pieces of 2 X 2 tiles and n-2k pieces of 1 X 2 tiles (0 <= k <= floor(n/2)). - Philippe Deléham, Feb 17 2014
Diagonal sums are A013979(n). - Philippe Deléham, Feb 17 2014
T(n,k) is the number of ways to tile a 2 X n rectangle with k pieces of 2 X 2 tiles and 1 X 2 tiles. - Emeric Deutsch, Aug 14 2014

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1, 2;
  0, 0, 2, 3;
  0, 0, 1, 5,  5;
  0, 0, 0, 3, 10,  8;
  0, 0, 0, 1,  9, 20, 13;
  0, 0, 0, 0,  4, 22, 38,  21;
  0, 0, 0, 0,  1, 14, 51,  71,  34;
  0, 0, 0, 0,  0,  5, 40, 111, 130,  55;
  0, 0, 0, 0,  0,  1, 20, 105, 233, 235,  89;
  0, 0, 0, 0,  0,  0,  6,  65, 256, 474, 420, 144;
		

Crossrefs

Cf. A000045, A000129, A001045, A037027, A038112, A038149, A084938, A128100 (reversed version).
Some other Fibonacci-Pascal triangles: A027926, A036355, A037027, A074829, A105809, A109906, A114197, A162741, A228074.

Programs

  • Haskell
    a111006 n k = a111006_tabl !! n !! k
    a111006_row n = a111006_tabl !! n
    a111006_tabl =  map fst $ iterate (\(us, vs) ->
       (vs, zipWith (+) (zipWith (+) ([0] ++ us ++ [0]) ([0,0] ++ us))
                        ([0] ++ vs))) ([1], [0,1])
    -- Reinhard Zumkeller, Aug 15 2013

Formula

T(0, 0) = 1, T(n, k) = 0 for k < 0 or for n < k, T(n, k) = T(n-1, k-1) + T(n-2, k-1) + T(n-2, k-2).
T(n, k) = A037027(k, n-k). T(n, n) = A000045(n+1). T(3n, 2n) = (n+1)*A001002(n+1) = A038112(n).
G.f.: 1/(1-yx(1-x)-x^2*y^2). - Paul Barry, Oct 04 2005
Sum_{k=0..n} x^k*T(n,k) = (-1)^n*A053524(n+1), (-1)^n*A083858(n+1), (-1)^n*A002605(n), A033999(n), A000007(n), A001045(n+1), A083099(n) for x = -4, -3, -2, -1, 0, 1, 2 respectively. - Philippe Deléham, Dec 02 2006
Sum_{k=0..n} T(n,k)*x^(n-k) = A053404(n), A015447(n), A015446(n), A015445(n), A015443(n), A015442(n), A015441(n), A015440(n), A006131(n), A006130(n), A001045(n+1), A000045(n+1) for x = 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 respectively. - Philippe Deléham, Feb 17 2014

A207538 Triangle of coefficients of polynomials v(n,x) jointly generated with A207537; see Formula section.

Original entry on oeis.org

1, 2, 4, 1, 8, 4, 16, 12, 1, 32, 32, 6, 64, 80, 24, 1, 128, 192, 80, 8, 256, 448, 240, 40, 1, 512, 1024, 672, 160, 10, 1024, 2304, 1792, 560, 60, 1, 2048, 5120, 4608, 1792, 280, 12, 4096, 11264, 11520, 5376, 1120, 84, 1, 8192, 24576, 28160, 15360
Offset: 1

Views

Author

Clark Kimberling, Feb 18 2012

Keywords

Comments

As triangle T(n,k) with 0<=k<=n and with zeros omitted, it is the triangle given by (2, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 04 2012
The numbers in rows of the triangle are along "first layer" skew diagonals pointing top-left in center-justified triangle given in A013609 ((1+2*x)^n) and along (first layer) skew diagonals pointing top-right in center-justified triangle given in A038207 ((2+x)^n), see links. - Zagros Lalo, Jul 31 2018
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 2.414213562373095... (A014176: Decimal expansion of the silver mean, 1+sqrt(2)), when n approaches infinity. - Zagros Lalo, Jul 31 2018

Examples

			First seven rows:
1
2
4...1
8...4
16..12..1
32..32..6
64..80..24..1
(2, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, ...) begins:
    1
    2,   0
    4,   1,  0
    8,   4,  0, 0
   16,  12,  1, 0, 0
   32,  32,  6, 0, 0, 0
   64,  80, 24, 1, 0, 0, 0
  128, 192, 80, 8, 0, 0, 0, 0
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 80-83, 357-358.

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]
    v[n_, x_] := u[n - 1, x] + v[n - 1, x]
    Table[Factor[u[n, x]], {n, 1, z}]
    Table[Factor[v[n, x]], {n, 1, z}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A207537, |A028297| *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A207538, |A133156| *)
    t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 2 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]}] // Flatten (* Zagros Lalo, Jul 31 2018 *)
    t[n_, k_] := t[n, k] = 2^(n - 2 k) * (n -  k)!/((n - 2 k)! k!) ; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]} ]  // Flatten (* Zagros Lalo, Jul 31 2018 *)

Formula

u(n,x) = u(n-1,x)+(x+1)*v(n-1,x), v(n,x) = u(n-1,x)+v(n-1,x), where u(1,x) = 1, v(1,x) = 1. Also, A207538 = |A133156|.
From Philippe Deléham, Mar 04 2012: (Start)
With 0<=k<=n:
Mirror image of triangle in A099089.
Skew version of A038207.
Riordan array (1/(1-2*x), x^2/(1-2*x)).
G.f.: 1/(1-2*x-y*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A190958(n+1), A127357(n), A090591(n), A089181(n+1), A088139(n+1), A045873(n+1), A088138(n+1), A088137(n+1), A099087(n), A000027(n+1), A000079(n), A000129(n+1), A002605(n+1), A015518(n+1), A063727(n), A002532(n+1), A083099(n+1), A015519(n+1), A003683(n+1), A002534(n+1), A083102(n), A015520(n+1), A091914(n) for x = -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 respectively.
T(n,k) = 2*T(n-1,k) + T(-2,k-1) with T(0,0) = 1, T(1,0) = 2, T(1,1) = 0 and T(n, k) = 0 if k<0 or if k>n. (End)
T(n,k) = A013609(n-k, n-2*k+1). - Johannes W. Meijer, Sep 05 2013
From Tom Copeland, Feb 11 2016: (Start)
A053117 is a reflected, aerated and signed version of this entry. This entry belongs to a family discussed in A097610 with parameters h1 = -2 and h2 = -y.
Shifted o.g.f.: G(x,t) = x / (1 - 2 x - t x^2).
The compositional inverse of G(x,t) is Ginv(x,t) = -[(1 + 2x) - sqrt[(1+2x)^2 + 4t x^2]] / (2tx) = x - 2 x^2 + (4-t) x^3 - (8-6t) x^4 + ..., a shifted o.g.f. for A091894 (mod signs with A091894(0,0) = 0).
(End)

A180222 a(n) = 4*a(n-1) + 8*a(n-2), with a(1)=0 and a(2)=1.

Original entry on oeis.org

0, 1, 4, 24, 128, 704, 3840, 20992, 114688, 626688, 3424256, 18710528, 102236160, 558628864, 3052404736, 16678649856, 91133837312, 497964548096, 2720928890880, 14867431948288, 81237158920192, 443888091267072, 2425449636429824, 13252903275855872
Offset: 1

Views

Author

Keywords

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 4*Self(n-1) + 8*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 16 2018
  • Mathematica
    Join[{a=0,b=1},Table[c=4*b+8*a;a=b;b=c,{n,100}]]
    LinearRecurrence[{4,8}, {0,1}, 30] (* G. C. Greubel, Jan 16 2018 *)
  • PARI
    concat(0,Vec(1/(1-4*x-8*x^2)+O(x^98))) \\ Charles R Greathouse IV, Dec 07 2011
    

Formula

a(n) = 2^(n-3)*((1+sqrt(3))^(n-1)-(1-sqrt(3))^(n-1))/sqrt(3). - Rolf Pleisch, May 14 2011
a(n) = (-1)^n*A174443(n-1). - Nathaniel Johnston, May 14 2011
G.f.: x^2/(1-4*x-8*x^2).
a(n+2) = Sum_{k=0..n} A201947(n,k)*3^(n-k). - Philippe Deléham, Dec 07 2011
a(n+2) = 2^n*A002605(n+1). - R. J. Mathar, May 07 2019

A239537 T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with no element equal to all horizontal neighbors or unequal to all vertical neighbors, and new values 0..2 introduced in row major order.

Original entry on oeis.org

1, 2, 1, 6, 2, 6, 16, 6, 24, 13, 44, 16, 216, 68, 47, 120, 44, 1536, 1014, 406, 128, 328, 120, 11616, 11108, 13254, 1584, 405, 896, 328, 86400, 131988, 293741, 98304, 7790, 1181, 2448, 896, 645504, 1533792, 7199001, 3785280, 984150, 33630, 3598, 6688, 2448
Offset: 1

Views

Author

R. H. Hardin, Mar 21 2014

Keywords

Comments

Table starts
.....1......2.........6...........16..............44...............120
.....1......2.........6...........16..............44...............120
.....6.....24.......216.........1536...........11616.............86400
....13.....68......1014........11108..........131988...........1533792
....47....406.....13254.......293741.........7199001.........171712936
...128...1584.....98304......3785280.......165336096........6976042240
...405...7790....984150.....71388971......5988724293......482858009716
..1181..33630...8368566...1093269814....169350916116....25030781490504
..3598.156032..77673624..18727824939...5466853947751..1514104924173186
.10705.695344.687582150.301846514891.164296850179323.84271877225127052

Examples

			Some solutions for n=4 k=4
..0..1..0..0..1....0..1..2..1..2....0..1..1..2..1....0..1..2..0..2
..0..1..0..0..1....0..1..2..1..2....0..1..1..2..1....0..1..2..0..2
..0..2..0..2..1....1..2..2..1..2....0..1..1..0..1....0..1..2..0..2
..0..2..0..2..1....1..2..2..1..0....2..0..2..0..2....1..0..2..1..2
..0..2..0..2..1....1..2..2..1..0....2..0..2..0..2....1..0..2..1..2
		

Crossrefs

Row 1 and 2 are A002605
Row 3 is A231317

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) +4*a(n-2) -3*a(n-3)
k=2: [order 10]
k=3: a(n) = 8*a(n-1) +26*a(n-2) -166*a(n-3) +96*a(n-4) +198*a(n-5) -81*a(n-6)
Empirical for row n:
n=1: a(n) = 2*a(n-1) +2*a(n-2)
n=2: a(n) = 2*a(n-1) +2*a(n-2)
n=3: a(n) = 6*a(n-1) +12*a(n-2) -8*a(n-3)
n=4: [order 10]
n=5: [order 37]
n=6: [order 85]

A084609 Coefficients of 1/sqrt(1-4*x-8*x^2); also, a(n) is the central coefficient of (1+2*x+3*x^2)^n.

Original entry on oeis.org

1, 2, 10, 44, 214, 1052, 5284, 26840, 137638, 710828, 3692140, 19266920, 100932220, 530479640, 2795917960, 14771797424, 78210099718, 414862155980, 2204273582236, 11729283976136, 62496686731924, 333400654676168
Offset: 0

Views

Author

Paul D. Hanna, Jun 01 2003

Keywords

Comments

Also number of paths from (0,0) to (n,0) using steps U=(1,1), H=(1,0) and D=(1,-1), U can have 3 colors and H can have 2 colors. - N-E. Fahssi, Mar 30 2008
Self-convolution of a(n)/2^n gives A002605(n+1). - Vladimir Reshetnikov, Oct 10 2016
The Gauss congruences a(n*p^k) == a(n^p^(k-1)) (mod p^k) hold for prime p and positive integers n and k. - Peter Bala, Jan 07 2022

Crossrefs

Row sums of A328347.

Programs

  • Magma
    A084609:= func< n | (&+[Binomial(n,j)*Binomial(2*(n-j),n)*2^j: j in [0..Floor(n/2)]]) >;
    [A084609(n): n in [0..50]]; // G. C. Greubel, Mar 26 2023
    
  • Mathematica
    (* Programs from Robert G. Wilson v, Mar 02 2011 *)
    a[n_]:= Sum[Binomial[n, k] Binomial[2(n-k), n] 2^k, {k, 0, n/2}]; Array[a, 30, 0]
    a[n_]:= CoefficientList[Expand[(1 +2x +3x^2)^n], x][[n+1]]; Array[a, 30, 0]
    CoefficientList[Series[1/Sqrt[1 -4x -8x^2], {x,0,30}], x]
    Range[0, 30]! CoefficientList[ Series[ Exp[ 2x] BesselI[0, Sqrt[12] x], {x, 0, 30}], x] (* End *)
    Table[2^n Hypergeometric2F1[(1-n)/2, -n/2, 1, 3], {n,0,30}] (* Vladimir Reshetnikov, Oct 10 2016 *)
  • Maxima
    a(n):=coeff(expand((1+2*x+3*x^2)^n),x,n);
    makelist(a(n),n,0,12);
    
  • PARI
    for(n=0,30,t=polcoeff((1+2*x+3*x^2)^n,n,x); print1(t","))
    
  • SageMath
    def A084609(n): return sum(binomial(n,j)*binomial(2*(n-j),n)*2^j for j in range(n//2+1))
    [A084609(n) for n in range(51)] # G. C. Greubel, Mar 26 2023

Formula

a(n) = Sum_{k = 0..floor(n/2)} C(n,k)*C(2*(n-k),n)*2^k. - Paul Barry, Sep 08 2004
a(n) = Sum_{k = 0..floor(n/2)} C(n,2*k)*C(2*k,k)*3^k*2^(n-2*k); a(n) = Sum_{k = 0..floor(n/2)} C(n,k)*C(n-k,k)*3^k*2^(n-2k). - Paul Barry, Sep 19 2006
E.g.f.: exp(2*x) * Bessel_I(0,2*sqrt(3)*x)
a(n) = ( 2*(2*n-1)*a(n-1) + 8*(n-1)*a(n-2) )/n, a(0)=1, a(1)=2. - Sergei N. Gladkovskii, Jul 20 2012
a(n) ~ sqrt(18+6*sqrt(3))*(2+2*sqrt(3))^n/(6*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 14 2012
G.f.: 1/(1 - 2*x*(1+2*x)*Q(0)), where Q(k)= 1 + (4*k+1)*x*(1+2*x)/(k+1 - x*(1+2*x)*(2*k+2)*(4*k+3)/(2*x*(1+2*x)*(4*k+3)+(2*k+3)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 15 2013
G.f.: G(0), where G(k)= 1 + x*(2+4*x)*(4*k+1)/(2*k+1 - x*(1+2*x)*(2*k+1)*(4*k+3)/(x*(1+2*x)*(4*k+3) + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 18 2013
a(n) = 2^n * hypergeom([(1-n)/2,-n/2], [1], 3) = binomial(2*n, n) * hypergeom([(1-n)/2,-n/2], [1/2-n], -2). - Vladimir Reshetnikov, Oct 10 2016
a(n) = (-2*sqrt(-2))^n * P(n, sqrt(-1/2)), where P(n,x) denotes the n-th Legendre polynomial. - Peter Bala, Feb 07 2022

A106435 a(n) = 3*a(n-1) + 3*a(n-2), a(0)=0, a(1)=3.

Original entry on oeis.org

0, 3, 9, 36, 135, 513, 1944, 7371, 27945, 105948, 401679, 1522881, 5773680, 21889683, 82990089, 314639316, 1192888215, 4522582593, 17146412424, 65006985051, 246460192425, 934401532428, 3542585174559, 13430960120961
Offset: 0

Views

Author

Roger L. Bagula, May 29 2005

Keywords

Comments

The first entry of the vector v[n] = M*v[n-1], where M is the 2 x 2 matrix [[0,3],[1,3]] and v[1] is the column vector [0,1]. The characteristic polynomial of the matrix M is x^2-3x-3.

Crossrefs

Programs

  • Haskell
    a106435 n = a106435_list !! n
    a106435_list = 0 : 3 : map (* 3) (zipWith (+) a106435_list (tail
    a106435_list))
    -- Reinhard Zumkeller, Oct 15 2011
    
  • Magma
    a:=[0,3]; [n le 2 select a[n] else    3*Self(n-1) + 3*Self(n-2) : n in [1..24]]; // Marius A. Burtea, Jan 21 2020
    
  • Magma
    R:=PowerSeriesRing(Rationals(), 25); Coefficients(R!(3*x/(1-3*x-3*x^2))); // Marius A. Burtea, Jan 21 2020
    
  • Maple
    seq(coeff(series(3*x/(1-3*x-3*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Mar 12 2020
  • Mathematica
    LinearRecurrence[{3,3}, {0,3}, 30] (* G. C. Greubel, Mar 12 2020 *)
  • PARI
    a(n)=([0,3;1,3]^n)[1,2]
    
  • Sage
    [3^((n+1)/2)*i^(1-n)*chebyshev_U(n-1, i*sqrt(3)/2) for n in (0..30)] # G. C. Greubel, Mar 12 2020

Formula

G.f.: 3*x/(1-3*x-3*x^2). - Philippe Deléham, Nov 19 2008
From G. C. Greubel, Mar 12 2020: (Start)
a(n) = 3^((n+1)/2) * Fibonacci(n, sqrt(3)), where F(n, x) is the Fibonacci polynomial.
a(n) = 3^((n+1)/2)*i^(1-n)*ChebyshevU(n-1, i*sqrt(3)/2). (End)

Extensions

Edited by N. J. A. Sloane, May 20 2006 and May 29 2006
Offset corrected by Reinhard Zumkeller, Oct 15 2011

A162517 Triangle of coefficients of polynomials defined by Binet form: P(n,x) = ((x + d)^n - (x - d)^n)/(2*d), where d = sqrt(x+4).

Original entry on oeis.org

0, 1, 2, 0, 3, 1, 4, 4, 4, 16, 0, 5, 10, 41, 8, 16, 6, 20, 86, 48, 96, 0, 7, 35, 161, 169, 348, 48, 64, 8, 56, 280, 456, 992, 384, 512, 0, 9, 84, 462, 1044, 2449, 1744, 2400, 256, 256, 10, 120, 732, 2136, 5482, 5920, 8640, 2560, 2560, 0, 11, 165, 1122, 4026, 11407, 16721, 26420, 14240, 14720, 1280, 1024
Offset: 1

Views

Author

Clark Kimberling, Jul 05 2009

Keywords

Examples

			First six rows:
  0
  1
  2...0
  3...1...4
  4...4...16...0
  5...10..41...8...16
		

Crossrefs

Programs

  • Magma
    m:=12;
    Q:= func< n,x | ((x+Sqrt(x+4))^n - (x-Sqrt(x+4))^n)/(2*Sqrt(x+4)) >;
    R:=PowerSeriesRing(Rationals(), m+1);
    T:= func< n,k | Coefficient(R!( Q(n, x) ), n-k) >;
    [0] cat [T(n,k): k in [1..n], n in [1..m]]; // G. C. Greubel, Jul 09 2023
    
  • Mathematica
    Q[n_, x_]:= Q[n, x]= ((x+Sqrt[x+4])^n -(x-Sqrt[x+4])^n)/(2*Sqrt[x+4]);
    T[n_, k_]:= Coefficient[Series[P[n,x], {x,0,n-k+1}], x, n-k];
    Join[{0}, Table[T[n,k], {n,12}, {k,n}]//Flatten] (* G. C. Greubel, Jul 09 2023 *)
  • SageMath
    def Q(n,x): return ((x+sqrt(x+4))^n - (x-sqrt(x+4))^n)/(2*sqrt(x+4))
    def T(n,k):
        P. = PowerSeriesRing(QQ)
        return P( Q(n,x) ).list()[n-k]
    [0]+flatten([[T(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Jul 09 2023

Formula

Q(n,x) = (P(n+1, x) - x*P(n,x))/(x+4), where P(n, x) is the n-th polynomial of A162516.
Q(n, x) also has the recurrence Q(n, x) = 2*x*Q(n-1, x) - (x^2 - x - 4)*Q(n-2, x).
From G. C. Greubel, Jul 09 2023: (Start)
T(n, k) = [x^(n-k)](((x+sqrt(x+4))^n -(x-sqrt(x+4))^n)/(2*sqrt(x+4))).
Sum_{k=1..n-1} T(n, k) = A063727(n-2), n >= 2.
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = A002605(n-1). (End)

A368518 Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 2*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 + 3*x^2.

Original entry on oeis.org

1, 1, 2, 2, 4, 7, 3, 10, 18, 20, 5, 20, 51, 68, 61, 8, 40, 118, 220, 251, 182, 13, 76, 264, 584, 905, 888, 547, 21, 142, 558, 1452, 2678, 3540, 3076, 1640, 34, 260, 1145, 3380, 7279, 11536, 13418, 10456, 4921, 55, 470, 2286, 7548, 18391, 33990, 47600, 49552
Offset: 1

Views

Author

Clark Kimberling, Jan 22 2024

Keywords

Comments

Because (p(n,x)) is a strong divisibility sequence, for each integer k, the sequence (p(n,k)) is a strong divisibility sequence of integers.

Examples

			First eight rows:
   1
   1    2
   2    4    7
   3   10   18    20
   5   20   51    68    61
   8   40  118   220   251   182
  13   76  264   584   905   888   547
  21  142  558  1452  2678  3540  3076  1640
Row 4 represents the polynomial p(4,x) = 3 + 10*x + 18*x^2 + 20*x^3, so (T(4,k)) = (3,10,18,20), k=0..3.
		

Crossrefs

Cf. A000045 (column 1); A002605, (p(n,n-1)); A030195 (row sums), (p(n,1)); A182228 (alternating row sums), (p(n,-1)); A015545, (p(n,2)); A099012, (p(n,-2)); A087567, (p(n,3)); A094440, A367208, A367209, A367210, A367211, A367297, A367298, A367299, A367300, A367301, A368150, A368151, A368152, A368153, A368154, A368155, A368156.

Programs

  • Mathematica
    p[1, x_] := 1; p[2, x_] := 1 + 2 x; u[x_] := p[2, x]; v[x_] := 1 + 3x^2;
    p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
    Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
    Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]

Formula

p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where p(1,x) = 1, p(2,x) = 1 + 2*x, u = p(2,x), and v = 1 + 32*x^2.
p(n,x) = k*(b^n - c^n), where k = -1/sqrt(5 + 4*x + 16*x^2), b = (1/2)*(2*x + 1 - 1/k), c = (1/2)*(2*x + 1 + 1/k).

A057093 Scaled Chebyshev U-polynomials evaluated at i*sqrt(10)/2. Generalized Fibonacci sequence.

Original entry on oeis.org

1, 10, 110, 1200, 13100, 143000, 1561000, 17040000, 186010000, 2030500000, 22165100000, 241956000000, 2641211000000, 28831670000000, 314728810000000, 3435604800000000, 37503336100000000, 409389409000000000, 4468927451000000000, 48783168600000000000
Offset: 0

Views

Author

Wolfdieter Lang, Aug 11 2000

Keywords

Comments

This is the m=10 member of the m-family of sequences a(m,n)= S(n,i*sqrt(m))*(-i*sqrt(m))^n, with S(n,x) given in Formula and g.f.: 1/(1-m*x-m*x^2). The instances m=1..9 are A000045 (Fibonacci), A002605, A030195, A057087, A057088, A057089, A057090, A057091, A057092.
With the roots rp(m) := (m+sqrt(m*(m+4)))/2 and rm(m) := (m-sqrt(m*(m+4)))/2 the Binet form of these m-sequences is a(n,m)= (rp(m)^(n+1)-rm(m)^(n+1))/(rp(m)-rm(m)).
a(n) gives the length of the word obtained after n steps with the substitution rule 0->1^10, 1->(1^10)0, starting from 0. The number of 1's and 0's of this word is 10*a(n-1) and 10*a(n-2), resp.

Programs

Formula

a(n) = 10*(a(n-1) + a(n-2)), a(-1)=0, a(0)=1.
a(n) = S(n, i*sqrt(10))*(-i*sqrt(10))^n with S(n, x) := U(n, x/2), Chebyshev's polynomials of the 2nd kind, A049310.
G.f.: 1/(1 - 10*x - 10*x^2).
a(n) = Sum_{k=0..n} 9^k*A063967(n,k). - Philippe Deléham, Nov 03 2006

Extensions

Extended by T. D. Noe, May 23 2011

A083337 a(n) = 2*a(n-1) + 2*a(n-2); a(0)=0, a(1)=3.

Original entry on oeis.org

0, 3, 6, 18, 48, 132, 360, 984, 2688, 7344, 20064, 54816, 149760, 409152, 1117824, 3053952, 8343552, 22795008, 62277120, 170144256, 464842752, 1269974016, 3469633536, 9479215104, 25897697280, 70753824768, 193303044096, 528113737728, 1442833563648, 3941894602752, 10769456332800
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Apr 29 2003

Keywords

Crossrefs

Programs

  • Haskell
    a083337 n = a083337_list !! n
    a083337_list =
       0 : 3 : map (* 2) (zipWith (+) a083337_list (tail a083337_list))
    -- Reinhard Zumkeller, Oct 15 2011
    
  • Mathematica
    CoefficientList[Series[3x/(1-2x-2x^2), {x, 0, 25}], x]
    s = Sqrt[3]; a[n_] := Simplify[s*((1 + s)^n - (1 - s)^n)/2]; Array[a, 30, 0] (* or *)
    LinearRecurrence[{2, 2}, {0, 3}, 31] (* Robert G. Wilson v, Aug 07 2018 *)
  • PARI
    apply( a(n)=([1,1;3,1]^n)[2,1], [0..30]) \\ or: ([2,2;1,0]^n)[2,1]*3. - M. F. Hasler, Aug 06 2018

Formula

G.f.: 3x/(1 - 2x - 2x^2).
a(n) = a(n-1) + 3*A026150(n-1). a(n)/A026150(n) converges to sqrt(3).
a(n) = lower left term of [1,1; 3,1]^n. - Gary W. Adamson, Mar 12 2008

Extensions

Edited and definition completed by M. F. Hasler, Aug 06 2018
Previous Showing 61-70 of 135 results. Next