A375602 Triangle read by rows, where row n is a block of length n*(n^2 + 1)/2, which is a permutation of the numbers of its constituents; see Comments.
1, 2, 4, 3, 5, 6, 7, 10, 13, 16, 8, 11, 14, 17, 19, 9, 12, 15, 18, 20, 21, 22, 26, 30, 34, 38, 42, 46, 23, 27, 31, 35, 39, 43, 47, 50, 24, 28, 32, 36, 40, 44, 48, 51, 53, 25, 29, 33, 37, 41, 45, 49, 52, 54, 55
Offset: 1
Examples
Triangle begins: k = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 n=1: 1; n=2: 2, 4, 3, 5, 6; n=3: 7, 10, 13, 16, 8, 11, 14, 17, 19, 9, 12, 15, 18, 20, 21; Subtracting (n - 1)*n*(n^2-n+2)/8 from each term in row n is a permutation of 1 .. n(n^2+1)/2: 1, 1, 3, 2, 4, 5, 1, 4, 7, 10, 2, 5, 8, 11, 13, 3, 6, 9, 12, 14, 15, ... The triangle's rows of permutations can be arranged as n successive upward antidiagonals in an array: 1, 3, 5, 10, 13, 15, ... 1, 4, 7, 11, 14, ... 2, 4, 8, 12, ... 1, 5, 9, ... 2, 6, ... 3, ...
Links
- Boris Putievskiy, Table of n, a(n) for n = 1..9316
- Boris Putievskiy, Integer Sequences: Irregular Arrays and Intra-Block Permutations, arXiv:2310.18466 [math.CO], 2023.
- Index entries for sequences that are permutations of the natural numbers.
Programs
-
Mathematica
a[n_]:=Module[{L,Ld,Rd,P,Result},L=Ceiling[(Sqrt[4*Sqrt[8*n+1]-3]-1)/2]; Ld=Ceiling[(Sqrt[8*n+1]-1)/2]; Rd=n-(Ld-1)*Ld/2; P=L*Rd+Ld-L*(L+1)/2-Max[Rd-(L^2-L+2)/2,0]*(Max[Rd-(L^2-L+2)/2,0]+1)/2; Result=P+(L-1)*L*(L^2-L+2)/8; Result] Nmax= 21; Table[a[n],{n,1,Nmax}]
Formula
Linear sequence:
a(n) = P(n) + (L(n) - 1)*L*(L(n)^2 - L(n) + 2)/8, where L(n) =ceiling((sqrt(4*Sqrt(8*n + 1) - 3) - 1)/2), Ld(n) = ceiling((Sqrt(8*n + 1) - 1)/2), Ld(n) = A002024(n), Rd(n) = n - (Ld(n) - 1)*Ld(n)/2, Rd(n) = A002260(n),
P(n) = L(n)*Rd(n) + Ld(n) - L(n)*(L(n) + 1)/2 - Max[Rd(n) - (L(n)^2 - L(n) + 2)/2, 0]*(Max[Rd(n) - (L(n)^2 - L(n) + 2)/2, 0] + 1)/2.
Triangular array T(n,k) for 1 <= k <= n(n^2+1)/2 (see Example):
T(n,k) = (n - 1)*n*(n^2 - n + 2)/8 + P(n,k), T(n,k) = A002817(n-1) + P(n,k), where P(n,k) = n*Rd(n,k) + Ld(n,k) - n - Max[Rd(n,k) - (n^2 - n + 2)/2, 0]*(Max[Rd(n,k) - (n^2 - n + 2)/2, 0] + 1)/2, where Ld(n,k) = Ceiling[(Sqrt[(n^2 - n + 1)^2 + 8*k] - (n^2 - n + 1))/2].
Comments