cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 94 results. Next

A218829 Number of ordered ways to write n = k + m with k > 0 and m > 0 such that prime(k) + 2 and prime(prime(m)) + 2 are both prime.

Original entry on oeis.org

0, 0, 1, 2, 2, 3, 2, 3, 4, 2, 3, 2, 2, 3, 2, 4, 3, 2, 3, 3, 3, 1, 3, 3, 1, 4, 4, 2, 3, 4, 4, 4, 4, 5, 3, 4, 4, 1, 4, 4, 3, 5, 4, 3, 3, 4, 6, 3, 5, 5, 3, 3, 3, 2, 4, 5, 4, 5, 4, 2, 3, 4, 4, 5, 5, 7, 4, 5, 2, 6, 4, 5, 7, 3, 5, 6, 2, 4, 3, 2
Offset: 1

Views

Author

Zhi-Wei Sun, Feb 05 2014

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 2, and a(n) = 1 only for n = 3, 22, 25, 38, 101, 273.
(ii) Each n = 2, 3, ... can be written as k + m with k > 0 and m > 0 such that 6*k - 1, 6*k + 1 and prime(prime(m)) + 2 are all prime.
(iii) Any integer n > 5 can be written as k + m with k > 0 and m > 0 such that phi(k) - 1, phi(k) + 1 and prime(prime(m)) + 2 are all prime, where phi(.) is Euler's totient function.
(iv) If n > 2 is neither 10 nor 31, then n can be written as k + m with k > 0 and m > 0 such that prime(k) + 2 and prime(prime(prime(m))) + 2 are both prime.
(v) If n > 1 is not equal to 133, then n can be written as k + m with k > 0 and m > 0 such that 6*k - 1, 6*k + 1 and prime(prime(prime(m))) + 2 are all prime.
Clearly, each part of the conjecture implies the twin prime conjecture.
We have verified part (i) for n up to 10^9. See the comments in A237348 for an extension of this part.

Examples

			a(3) = 1 since 3 = 2 + 1 with prime(2) + 2 = 3 + 2 = 5 and prime(prime(1)) + 2 = prime(2) + 2 = 5 both prime.
a(22) = 1 since 22 = 20 + 2 with prime(20) + 2 = 71 + 2 = 73 and prime(prime(2)) + 2 = prime(3) + 2 = 5 + 2 = 7 both prime.
a(25) = 1 since 25 = 2 + 23 with prime(2) + 2 = 3 + 2 = 5 and prime(prime(23)) + 2 = prime(83) + 2 = 431 + 2 = 433 both prime.
a(38) = 1 since 38 = 35 + 3 with prime(35) + 2 = 149 + 2 = 151 and prime(prime(3)) + 2 = prime(5) + 2 = 11 + 2 = 13 both prime.
a(101) = 1 since 101 = 98 + 3 with prime(98) + 2 = 521 + 2 = 523 and prime(prime(3)) + 2 = prime(5) + 2 = 11 + 2 = 13 both prime.
a(273) = 1 since 273 = 2 + 271 with prime(2) + 2 = 3 + 2 = 5 and prime(prime(271)) + 2 = prime(1741) + 2 = 14867 + 2 = 14869 both prime.
		

Crossrefs

Programs

  • Mathematica
    pq[n_]:=PrimeQ[Prime[n]+2]
    PQ[n_]:=PrimeQ[Prime[Prime[n]]+2]
    a[n_]:=Sum[If[pq[k]&&PQ[n-k],1,0],{k,1,n-1}]
    Table[a[n],{n,1,80}]

A124518 Numbers k such that 10k-1 and 10k+1 are twin primes.

Original entry on oeis.org

3, 6, 15, 18, 24, 27, 42, 57, 60, 66, 81, 102, 105, 123, 129, 132, 162, 195, 213, 231, 234, 255, 273, 279, 297, 300, 312, 330, 333, 336, 339, 354, 393, 402, 405, 423, 426, 465, 480, 501, 510, 528, 552, 564, 585, 588, 609, 627, 630, 636, 645, 657, 666, 669, 678
Offset: 1

Views

Author

Artur Jasinski, Nov 04 2006

Keywords

Comments

All terms are divisible by 3. - Robert Israel, Apr 07 2019

Crossrefs

Programs

  • Maple
    select(t -> isprime(10*t+1) and isprime(10*t-1), [seq(i,i=3..1000,3)]); # Robert Israel, Apr 07 2019
  • Mathematica
    Select[Range[678], And @@ PrimeQ[{-1, 1} + 10# ] &] (* Ray Chandler, Nov 16 2006 *)

A236531 a(n) = |{0 < k < n: {6*k -1 , 6*k + 1} and {prime(n-k), prime(n-k) + 2} are both twin prime pairs}|.

Original entry on oeis.org

0, 0, 1, 2, 2, 2, 2, 3, 2, 3, 1, 4, 2, 3, 4, 1, 3, 2, 3, 5, 2, 4, 3, 2, 4, 1, 5, 4, 3, 5, 3, 3, 4, 3, 7, 5, 4, 7, 1, 7, 1, 5, 8, 3, 8, 5, 5, 5, 3, 9, 6, 6, 7, 4, 6, 3, 5, 8, 6, 7, 5, 6, 4, 5, 7, 7, 6, 5, 4, 4, 6, 5, 7, 6, 9, 3, 5, 5, 5, 6, 5, 8, 5, 5, 6, 5, 7, 4, 5, 10, 3, 7, 5, 6, 3, 4, 7, 5, 6, 6
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 27 2014

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 2.
(ii) If n > 3 is neither 11 nor 125, then n can be written as k + m with k > 0 and m > 0 such that 6*k - 1, 6*k + 1, prime(m) + 2 and 3*prime(m) - 10 are all prime.
(iii) Any integer n > 458 can be written as p + q with q > 0 such that {p, p + 2} and {prime(q), prime(q) + 2} are both twin prime pairs.
This is much stronger than the twin prime conjecture. We have verified part (i) of the conjecture for n up to 2*10^7.

Examples

			a(11) = 1 since {6*1 - 1, 6*1 + 1} = {5, 7} and {prime(10), prime(10) + 2} = {29, 31} are both twin prime pairs.
a(16) = 1 since {6*3 - 1, 6*3 + 1} = {17, 19} and {prime(13), prime(13) + 2} = {41, 43} are both twin prime pairs.
		

Crossrefs

Programs

  • Mathematica
    p[n_]:=PrimeQ[6n-1]&&PrimeQ[6n+1]
    q[n_]:=PrimeQ[Prime[n]+2]
    a[n_]:=Sum[If[p[k]&&q[n-k],1,0],{k,1,n-1}]
    Table[a[n],{n,1,100}]

A060213 Lesser of twin primes whose average is 6 times a prime.

Original entry on oeis.org

11, 17, 29, 41, 101, 137, 281, 617, 641, 821, 1697, 1877, 2081, 2237, 2381, 2657, 2801, 3461, 3557, 3917, 4637, 4721, 5441, 6197, 6701, 8537, 8597, 9677, 10937, 12161, 12377, 12821, 12917, 13217, 13721, 13757, 13997, 14081, 16061, 17417
Offset: 1

Views

Author

Labos Elemer, Mar 20 2001

Keywords

Comments

Lowest factor-density among all positive consecutive integer triples; for p > 41, last digit of p can be only 1 or 7 (see Alexandrov link, p. 15). - Lubomir Alexandrov, Nov 25 2001

Examples

			102197 is here because 102198 = 17033*6 and 17033 is prime.
		

Crossrefs

Programs

  • Maple
    map(t -> 6*t-1, select(p -> isprime(p) and isprime(6*p-1) and isprime(6*p+1), [2,seq(i,i=3..10000,2)]));
  • Mathematica
    Transpose[Select[Partition[Prime[Range[2500]],2,1],#[[2]]-#[[1]] == 2 && PrimeQ[Mean[#]/6]&]][[1]] (* Harvey P. Dale, May 04 2014 *)
  • PARI
    isok(n) = isprime(n) && isprime(n+2) && !((n+1) % 6) && isprime((n+1)/6); \\ Michel Marcus, Dec 14 2013

Formula

a(n) = 6 * A060212(n) - 1. - Sean A. Irvine, Oct 31 2022

Extensions

Offset changed to 1 by Michel Marcus, Dec 14 2013

A124065 Numbers k such that 8*k - 1 and 8*k + 1 are twin primes.

Original entry on oeis.org

9, 24, 30, 39, 54, 75, 129, 144, 165, 186, 201, 234, 261, 264, 324, 336, 339, 375, 390, 396, 420, 441, 459, 471, 516, 534, 600, 621, 654, 660, 690, 705, 735, 795, 819, 849, 870, 891, 936, 945, 1011, 1029, 1125, 1155, 1179, 1215, 1221, 1251, 1284, 1395, 1419
Offset: 1

Views

Author

Artur Jasinski, Nov 04 2006

Keywords

Examples

			9 is in the sequence since 8*9 - 1 = 71 and 8*9 + 1 = 73 are twin primes.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..2000] | IsPrime(8*n+1) and IsPrime(8*n-1)] // Vincenzo Librandi, Mar 08 2010
    
  • Mathematica
    Select[Range[1500], And @@ PrimeQ[{-1, 1} + 8# ] &] (* Ray Chandler, Nov 16 2006 *)
  • Python
    from sympy import isprime
    def ok(n): return isprime(8*n - 1) and isprime(8*n + 1)
    print(list(filter(ok, range(1420)))) # Michael S. Branicky, Sep 24 2021

Extensions

Extended by Ray Chandler, Nov 16 2006

A121765 Numbers n such that 6*n-1 is composite while 6*n+1 is prime.

Original entry on oeis.org

6, 11, 13, 16, 21, 26, 27, 35, 37, 46, 51, 55, 56, 61, 62, 63, 66, 68, 73, 76, 81, 83, 90, 91, 96, 101, 102, 105, 112, 115, 118, 121, 122, 123, 125, 126, 128, 131, 142, 146, 151, 153, 156, 161, 165, 166, 168, 173, 178, 181, 186, 187, 188, 195, 200, 202, 206, 208, 216
Offset: 1

Views

Author

Lekraj Beedassy, Aug 20 2006

Keywords

Comments

Entries in A046953 which are not in A060461 or equivalently, entries in A024899 which are not in A002822.

Crossrefs

Cf. A121764.

Programs

  • GAP
    Filtered([1..250], k-> not IsPrime(6*k-1) and IsPrime(6*k+1)); # G. C. Greubel, Feb 20 2019
  • Magma
    [n: n in [1..250] | not IsPrime(6*n-1) and  IsPrime(6*n+1)]; // G. C. Greubel, Feb 20 2019
    
  • Mathematica
    Select[Range[250], ! PrimeQ[6# - 1] && PrimeQ[6# + 1] &] (* Ray Chandler, Aug 22 2006 *)
  • PARI
    for(n=1, 250, if(!isprime(6*n-1) && isprime(6*n+1), print1(n", "))) \\ G. C. Greubel, Feb 20 2019
    
  • Sage
    [n for n in (1..250) if not is_prime(6*n-1) and  is_prime(6*n+1)] # G. C. Greubel, Feb 20 2019
    

Extensions

Extended by Ray Chandler, Aug 22 2006

A182481 a(n) is the least k such that 6*k*n-1 and 6*k*n+1 are twin primes, and a(n)=0, if such k does not exist.

Original entry on oeis.org

1, 1, 1, 3, 1, 2, 1, 4, 2, 1, 3, 1, 4, 5, 2, 2, 1, 1, 2, 2, 7, 5, 1, 3, 1, 2, 5, 16, 2, 1, 7, 1, 1, 5, 2, 2, 9, 1, 8, 1, 5, 9, 4, 5, 1, 3, 1, 4, 3, 2, 7, 1, 20, 5, 2, 8, 14, 1, 3, 21, 43, 4, 6, 3, 5, 8, 4, 9, 2, 1, 3, 1, 14, 15, 9, 30, 1, 4, 22, 7, 20, 21, 9
Offset: 1

Views

Author

Vladimir Shevelev, May 01 2012

Keywords

Comments

Conjecture: a(n)>0; equivalently, for every n, the arithmetic progression {6*k*n-1} contains infinitely many lessers of twin primes (A001359).

Crossrefs

Programs

  • Mathematica
    Table[k = 0; While[! (PrimeQ[6*k*n - 1] && PrimeQ[6*k*n + 1]), k++]; k, {n, 100}] (* T. D. Noe, May 02 2012 *)
  • PARI
    a(n)=my(k);n*=6;until(isprime(n*k++-1)&&isprime(n*k+1),);k \\ Charles R Greathouse IV, May 01 2012

A329158 Let P1>=3, P2, P3 be consecutive primes, with P3-P2=2. a(n)=(P2+P3)/12 when P2-P1 sets a record.

Original entry on oeis.org

1, 2, 5, 25, 87, 192, 500, 1158, 1668, 4217, 4713, 5955, 17127, 28905, 61838, 76967, 96147, 139725, 260342, 1061923, 1205080, 4663498, 8871842, 11732765, 32534740, 42313103, 77638122, 92523718, 282054523, 728833340, 2940948542, 3344803093, 11810906035
Offset: 1

Views

Author

Hugo Pfoertner, Nov 06 2019

Keywords

Comments

6*a(n)-1, 6*a(n)+1 are twin primes such that the prime gap immediately preceding 6*a(n)-1 sets a record. The corresponding gap lengths are provided in A329159.

Crossrefs

Programs

  • PARI
    p1=3;p2=5;r=0;forprime(p3=7,1e9,if(p3-p2==2,d=p2-p1;if(d>r,r=d;print1((p2+p3)/12,", ")));p1=p2;p2=p3)

A329160 Let P1>=5, P2, P3 be consecutive primes, with P2-P1=2. a(n)=(P1+P2)/12 when P3-P2 sets a record.

Original entry on oeis.org

1, 5, 23, 33, 87, 278, 495, 1293, 2027, 2690, 4245, 6773, 13283, 24938, 28893, 44270, 67475, 139708, 224922, 315893, 971000, 1723960, 3319792, 6228255, 7013717, 13194622, 25321985, 31864375, 32163975, 65155398, 86090027, 381175405, 452803425
Offset: 1

Views

Author

Hugo Pfoertner, Nov 08 2019

Keywords

Comments

6*a(n)-1, 6*a(n)+1 are twin primes such that the prime gap immediately following 6*a(n)+1 sets a record. The corresponding gap lengths are provided in A329161.

Examples

			See A329161.
		

Crossrefs

Programs

  • PARI
    p1=5; p2=7; r=0; forprime(p3=11, 1e9, if(p2-p1==2, d=p3-p2; if(d>r, r=d; print1((p1+p2)/12, ", "))); p1=p2; p2=p3)

A121763 Numbers n such that 6*n-1 is prime while 6*n+1 is composite.

Original entry on oeis.org

4, 8, 9, 14, 15, 19, 22, 28, 29, 39, 42, 43, 44, 49, 53, 59, 60, 64, 65, 67, 74, 75, 78, 80, 82, 84, 85, 93, 94, 98, 99, 108, 109, 113, 114, 117, 120, 124, 127, 129, 133, 140, 144, 148, 152, 155, 157, 158, 159, 162, 163, 164, 169, 183, 184, 185, 194, 197, 198, 199
Offset: 1

Views

Author

Lekraj Beedassy, Aug 20 2006

Keywords

Comments

Entries of A024898 which are not in A002822 or equivalently, entries of A046954 which are not in A060461.

Crossrefs

Programs

  • GAP
    Filtered([1..250], k-> IsPrime(6*k-1) and not IsPrime(6*k+1)); # G. C. Greubel, Feb 20 2019
  • Magma
    [n: n in [1..250] | IsPrime(6*n-1) and not IsPrime(6*n+1)]; // G. C. Greubel, Feb 20 2019
    
  • Mathematica
    Select[Range[200], PrimeQ[6# -1] && !PrimeQ[6# +1] &] (* Ray Chandler, Aug 22 2006 *)
  • PARI
    for(n=1, 250, if(isprime(6*n-1) && !isprime(6*n+1), print1(n", "))) \\ G. C. Greubel, Feb 20 2019
    
  • Sage
    [n for n in (1..250) if is_prime(6*n-1) and not is_prime(6*n+1)] # G. C. Greubel, Feb 20 2019
    

Extensions

Extended by Ray Chandler, Aug 22 2006
Previous Showing 31-40 of 94 results. Next