A178886
Divide, cell by cell, sequence A178802 by sequence A178888.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 6, 4, 2, 3, 1, 24, 12, 12, 6, 6, 4, 1, 120, 48, 48, 24, 18, 36, 6, 8, 12, 5, 1, 720, 240, 240, 240, 72, 144, 72, 72, 24, 72, 24, 10, 20, 6, 1, 5040, 1440, 1440, 1440, 720, 360
Offset: 1
A178802 begins 1 2 2 6 12 6 24 48 24 72 24 ...
A178888 begins 1 2 2 3 6 6 4 12 12 24 24 ...
therefore
A178886 begins 1 1 1 2 2 1 6 4 2 3 1 ...
A194649
Triangle of coefficients of a sequence of polynomials related to the enumeration of linear labeled rooted trees.
Original entry on oeis.org
1, 1, 3, 4, 13, 36, 24, 75, 316, 432, 192, 541, 3060, 6360, 5760, 1920, 4683, 33244, 92880, 127680, 86400, 23040, 47293, 403956, 1418424, 2620800, 2688000, 1451520, 322560, 545835, 5449756, 23051952, 53548992, 73785600, 60318720, 27095040, 5160960, 7087261, 80985780, 400813080, 1122145920, 1943867520, 2133734400
Offset: 0
Triangle begins
n\k|......0.......1........2........3........4........5.......6
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
.0.|......1
.1.|......1
.2.|......3.......4
.3.|.....13......36.......24
.4.|.....75.....316......432......192
.5.|....541....3060.....6360.....5760.....1920
.6.|...4683...33244....92880...127680....86400....23040
.7.|..47293..403956..1418424..2620800..2688000..1451520..322560
..
-
T[0, 0] = T[1, 0] = 1; T[n_, k_] /; 0 <= k <= n-1 := T[n, k] = (k+1)*(2* T[n-1, k-1] + 3*T[n-1, k] + T[n-1, k+1]); T[, ] = 0;
{1}~Join~Table[T[n, k], {n, 1, 9}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Nov 13 2019 *)
A208057
Triangle by rows, generated from the odd integers and related to A000165.
Original entry on oeis.org
1, 1, 1, 4, 3, 1, 24, 18, 5, 1, 192, 144, 40, 7, 1, 1920, 1440, 400, 70, 9, 1, 23040, 17280, 4800, 840, 108, 11, 1, 322560, 241920, 67200, 11760, 1512, 154, 13, 1, 5160960, 3870720, 1075200, 188160, 24192, 2464, 208, 15, 1
Offset: 0
First few rows of the triangle:
1;
1, 1;
4, 3, 1;
24, 18, 5, 1;
192, 144, 40, 7, 1;
1920, 1440, 400, 70, 9, 1;
23040, 17280, 4800, 840, 108, 11, 1;
322560, 241920, 67200, 11760, 1512, 154, 13, 1;
...
-
T:= proc(n) option remember; local M;
M:= (Matrix(n+1, (i, j)-> `if`(i=j, 1, `if`(i>j, -2*j+1, 0)))^(-1));
seq(M[n+1, k], k=1..n+1)
end:
seq(T(n), n=0..10); # Alois P. Heinz, Feb 27 2012
-
T[n_] := T[n] = Module[{M}, M = Table[If[i == j, 1, If[i>j, -2*j+1, 0]], {i, 1, n+1 }, {j, 1, n+1}] // Inverse; M[[n+1]]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Mar 09 2015, after Alois P. Heinz *)
A302606
a(n) = n! * [x^n] exp(n*x)*arcsinh(x).
Original entry on oeis.org
0, 1, 4, 26, 240, 2884, 42660, 748544, 15185856, 349574544, 9000902500, 256293989984, 7996078704240, 271246034903232, 9939835626507332, 391303051339622400, 16469438021801262848, 737992773619777599744, 35077254665501330210628, 1762671472887447792620032
Offset: 0
Cf.
A001818,
A002866,
A291483,
A302583,
A302584,
A302585,
A302586,
A302587,
A302605,
A302608,
A302609.
-
Table[n! SeriesCoefficient[Exp[n x] ArcSinh[x], {x, 0, n}], {n, 0, 19}]
A308939
Expansion of e.g.f. 1 / (1 - Sum_{k>=1} (2*k - 1)!!*x^k/k!).
Original entry on oeis.org
1, 1, 5, 39, 411, 5445, 86805, 1616895, 34448715, 826093485, 22017673125, 645633501975, 20655688959675, 715958472554325, 26726481024167925, 1068988088284491375, 45608095005687088875, 2067503007329827192125, 99238033465208117605125, 5027986481205385725402375
Offset: 0
-
a := n -> local j, k; 2^n*add(add((-1)^(k-j)*binomial(k, j)*pochhammer(j/2, n), j = 0..k), k = 0..n): seq(a(n), n = 0..19); # Peter Luschny, Mar 08 2024
-
nmax = 19; CoefficientList[Series[1/(2 - 1/Sqrt[1 - 2 x]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] (2 k - 1)!! a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]
A001217
Sorted list of orders of Weyl groups of types A_n, B_n, D_n, E_n, F_4, G_2.
Original entry on oeis.org
1, 2, 4, 6, 8, 12, 24, 48, 120, 192, 384, 720, 1152, 1920, 3840, 5040, 23040, 40320, 46080, 51840, 322560, 362880, 645120, 2903040, 3628800, 5160960, 10321920, 39916800, 92897280, 185794560, 479001600, 696729600, 1857945600, 3715891200
Offset: 1
A028371
a(n) = (2^(n-1)-1)!*2^((2^(n-1)-1)-1).
Original entry on oeis.org
1, 24, 322560, 21424936845312000, 8829205774994708066835865418197893120000000
Offset: 2
A052564
Expansion of e.g.f. x*(1-x)/(1-2*x).
Original entry on oeis.org
0, 1, 2, 12, 96, 960, 11520, 161280, 2580480, 46448640, 928972800, 20437401600, 490497638400, 12752938598400, 357082280755200, 10712468422656000, 342798989524992000, 11655165643849728000, 419585963178590208000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
[n le 1 select n else 2^(n-2)*Factorial(n): n in [0..20]]; // G. C. Greubel, May 05 2019
-
spec := [S,{S=Prod(Z,Sequence(Prod(Z,Sequence(Z))))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
a = x/(1 - x); CoefficientList[Series[a/(1 - a^2), {x, 0, 20}], x]* Table[n!, {n, 0, 20}] (* Geoffrey Critzer, Mar 05 2010 *)
Part[#,Range[1, Length[#], 1]]&@(Array[#!&, Length[#], 0]*#)&@CoefficientList[Series[x*(1-x)/(1-2x), {x, 0, 20}], x]// ExpandAll (* Vincenzo Librandi, Jan 04 2013 - after Olivier Gérard in A213068 *)
With[{nn=20},CoefficientList[Series[x (1-x)/(1-2x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jul 18 2025 *)
-
{a(n) = if(n<=1, n, 2^(n-2)*n!)}; \\ G. C. Greubel, May 05 2019
-
my(x='x+O('x^20)); concat([0], Vec(serlaplace(x*(1-x)/(1-2*x)))) \\ Felix Fröhlich, May 05 2019
-
[0,1]+[2^(n-2)*factorial(n) for n in (2..20)] # G. C. Greubel, May 05 2019
A072503
Number of ways to lace a shoe with n eyelet pairs such that there is no direct "horizontal" connection between any adjacent eyelet pair.
Original entry on oeis.org
3, 45, 1824, 109560, 9520560, 1145057760, 181091917440
Offset: 3
The 6 non-straight lacings for n=3 are: 124536, 135426, 142356, 145326, 153246, 154236. Not counting mirror images we get a(3)=3.
A079638
Matrix product of unsigned Lah-triangle |A008297(n,k)| and unsigned Stirling1-triangle |A008275(n,k)|.
Original entry on oeis.org
1, 3, 1, 14, 9, 1, 90, 83, 18, 1, 744, 870, 275, 30, 1, 7560, 10474, 4275, 685, 45, 1, 91440, 143892, 70924, 14805, 1435, 63, 1, 1285200, 2233356, 1274196, 324289, 41160, 2674, 84, 1, 20603520, 38769840, 24870572, 7398972, 1151409, 98280, 4578
Offset: 1
Triangle begins
1;
3, 1;
14, 9, 1;
90, 83, 18, 1;
744, 870, 275, 30, 1;
7560, 10474, 4275, 685, 45, 1;
...
- Michael De Vlieger, Table of n, a(n) for n = 1..1225 (rows n = 1..50, flattened).
- William Keith, Rishi Nath, and James Sellers, On simultaneous (s, s+t, s+2t, ...)-core partitions, arXiv:2508.00074 [math.CO], 2025. See p. 3.
-
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ..) as column 0.
BellMatrix(n -> n!*(2^(n+1)-1), 9); # Peter Luschny, Jan 26 2016
-
BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
B = BellMatrix[Function[n, n! (2^(n + 1) - 1)], rows = 12];
Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
Comments