A288454
Chebyshev coefficients of density of states of square lattice.
Original entry on oeis.org
1, -8, 32, -512, 4608, -73728, 819200, -13107200, 160563200, -2569011200, 33294385152, -532710162432, 7161992183808, -114591874940928, 1580900152246272, -25294402435940352, 355702534255411200, -5691240548086579200, 81223136710964019200, -1299570187375424307200, 18765793505701126995968
Offset: 0
Related to numbers of walks returning to origin, W_n, on square lattice (
A002894).
-
zng[n_] := If[OddQ[n], 0, (1+KroneckerDelta[m]) 2^(2m-1) Binomial[2m, m]^2 HypergeometricPFQ[{-m, -m, -m}, {1-2m,1/2-m}, 1] /. m->n/2];
Table[zng[n], {n,0,50}]
Wchain[n_] := If[OddQ[n], 0, Binomial[n, n/2]];
Wsq[n_] := Wchain[n]^2;
ank[n_, k_] := SeriesCoefficient[ChebyshevT[n, x], {x, 0, k}];
zng[n_] := Sum[ank[n, k]*4^(n - k)*Wsq[k], {k, 0, n}];
Table[zng[n], {n,0,50}]
A364303
Square array read by ascending antidiagonals: T(n,k) = [x^k] (1 - x)^(2*k) * Legendre_P(n*k, (1 + x)/(1 - x)) for n, k >= 0.
Original entry on oeis.org
1, 1, -2, 1, 0, 6, 1, 4, -6, -20, 1, 10, 36, 0, 70, 1, 18, 300, 400, 90, -252, 1, 28, 1050, 11440, 4900, 0, 924, 1, 40, 2646, 77616, 485100, 63504, -1680, -3432, 1, 54, 5544, 316540, 6370650, 21841260, 853776, 0, 12870, 1, 70, 10296, 972400, 42031990, 554822268, 1022041020, 11778624, 34650, -48620
Offset: 0
Square array begins:
n\k| 0 1 2 3 4 5
- + - - - - - - - - - - - - - - - - - - - - - - - - -
0 | 1 -2 6 -20 70 -252 ... (-1)^k*A000984(k)
1 | 1 0 -6 0 90 0 ... A245086
2 | 1 4 36 400 4900 63504 ... A002894
3 | 1 10 300 11440 485100 21841260 ... A275652
4 | 1 18 1050 77616 6370650 554822268 ... A275653
5 | 1 28 2646 316540 42031990 5921058528 ... A275654
6 | 1 40 5544 972400 189290920 39089615040 ... A275655
7 | 1 54 10296 2484000 665091000 188907932304 ... A364304
8 | 1 70 17550 5567380 1960044750 732012601320 ... A364305
-
T(n,k) := coeff(series( (1 - x)^(2*k) * LegendreP(n*k, (1 + x)/(1 - x)), x, 11), x, k):
# display as a square array
seq(print(seq(T(n, k), k = 0..10)), n = 0..10);
# display as a sequence
seq(seq(T(n-k, k), k = 0..n), n = 0..10);
A364509
Square array read by ascending antidiagonals: T(n,k) = (2*k)!/k!^2 * ( (2*n*k)! * ((n + 2)*k)! )/( (n*k)! * ((n + 1)*k)!^2 ) for n, k > = 0.
Original entry on oeis.org
1, 1, 4, 1, 6, 36, 1, 16, 90, 400, 1, 50, 784, 1680, 4900, 1, 168, 8910, 48400, 34650, 63504, 1, 588, 113256, 2011100, 3312400, 756756, 853776, 1, 2112, 1528436, 96993024, 503909070, 240374016, 17153136, 11778624, 1, 7722, 21395520, 5056527000, 92279796840, 133954543800, 18116083216
Offset: 0
Square array begins:
n\k| 0 1 2 3 4 5
- + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0 | 1 4 36 400 4900 63504 ... A002894
1 | 1 6 90 1680 34650 756756 ... A006480
2 | 1 16 784 48400 3312400 240374016 ... A364510
3 | 1 50 8910 2011100 503909070 133954543800 ... A364511
4 | 1 168 113256 96993024 92279796840 93172920645168 ...
5 | 1 588 1528436 5056527000 18592935952500 72567511917065088 ...
- Winston de Greef, Table of n, a(n) for n = 0..3240 (80 antidiagonals)
- J. W. Bober, Factorial ratios, hypergeometric series, and a family of step functions, arXiv:0709.1977 [math.NT], 2007; J. London Math. Soc. (2) 79 2009, 422-444.
- Romeo Meštrović, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2012), arXiv:1111.3057 [math.NT], (2011).
- K. Soundararajan, Integral factorial ratios: irreducible examples with height larger than 1, Phil. Trans. Royal Soc., A378: 2018044, 2019.
- Wikipedia, Dixon's identity
-
# display as a square array
T(n,k) := (2*k)!/k!^2 * ( (2*n*k)! * ((n + 2)*k)! )/( (n*k)! * ((n + 1)*k)!^2 ):
seq( print(seq(T(n,k), k = 0..10)), n = 0..10):
# display as a sequence
seq( seq(T(n-k,k), k = 0..n), n = 0..10);
-
T(n,k) = (2*k)!/k!^2 * ( (2*n*k)! * ((n + 2)*k)! )/( (n*k)! * ((n + 1)*k)!^2 ) \\ Winston de Greef, Oct 05 2023
A010370
a(n) = binomial(2*n, n)^2 / (1-2*n).
Original entry on oeis.org
1, -4, -12, -80, -700, -7056, -77616, -906048, -11042460, -139053200, -1796567344, -23696871744, -317933029232, -4326899214400, -59605244280000, -829705000377600, -11654762427179100, -165021757273414800, -2353088020380174000, -33764531705178120000
Offset: 0
Joe Keane (jgk(AT)jgk.org)
G.f. = 1 - 4*x - 12*x^2 - 80*x^3 - 700*x^4 - 7056*x^5 - 77616*x^6 - ...
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 591.
- J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 8.
-
seq(binomial(2*n,n)^2/(1-2*n), n=0..30); # Robert Israel, Jul 10 2017
-
CoefficientList[Series[EllipticE[16x]2/Pi, {x, 0, 20}], x]
Table[Binomial[2n,n]^2/(1-2n),{n,0,30}] (* Harvey P. Dale, Mar 07 2013 *)
-
{a(n) = binomial(2*n, n)^2 / (1 - 2*n)}; /* Michael Somos, Dec 13 2002 */
A110257
Numerators in the coefficients that form the odd-indexed partial quotients of the continued fraction representation of the inverse tangent of 1/x.
Original entry on oeis.org
1, 5, 81, 325, 20825, 83349, 1334025, 5337189, 1366504425, 5466528925, 87470372561, 349899121845, 22394407746529, 89580335298125, 1433319858545625, 5733391194015525, 5871086572691471625
Offset: 1
arctan(1/x) = 1/x - 1/(3*x^3) + 1/(5*x^5) - 1/(7*x^7) +-...
= [0; x, 3*x, 5/4*x, 28/9*x, 81/64*x, 704/225*x, 325/256*x, 768/245*x, 20825/16384*x, 311296/99225*x, 83349/65536*x, 1507328/480249*x, 1334025/1048576*x, 3145728/1002001*x,...]
= 1/(x + 1/(3*x + 1/(5/4*x + 1/(28/9*x + 1/(81/64*x +...))))).
The coefficients of x in the even-indexed partial quotients converge to Pi: {3, 28/9, 704/225, 768/245, 311296/99225, ...}.
The coefficients of x in the odd-indexed partial quotients converge to 4/Pi: {1, 5/4, 81/64, 325/256, 20825/16384, ...}.
-
a := n -> (4*n+1)*binomial(2*n,n)^2/4^(add(i,i=convert(n,base,2)));
seq(a(n), n=0..16); # Peter Luschny, Mar 23 2014
-
a[n_] := (4n+1) Binomial[2n, n]^2 / 4^DigitCount[n, 2, 1];
Array[a, 16] (* Jean-François Alcover, Jun 13 2019, from Maple *)
-
{a(n)=numerator(subst((contfrac( sum(k=0,2*n+1,(-1)^k/x^(2*k+1)/(2*k+1)),2*n+2))[2*n],x,1))}
A135389
Number of walks of length 2*n+2 from origin to (1,1) in a square lattice.
Original entry on oeis.org
2, 24, 300, 3920, 52920, 731808, 10306296, 147232800, 2127513960, 31031617760, 456164781072, 6749962774464, 100445874620000, 1502052155856000, 22557604697766000, 340044833169460800, 5143178101688094600
Offset: 0
Stefan Hollos (stefan(AT)exstrom.com), Dec 11 2007
G.f. = 2 + 24*x + 300*x^2 + 3920*x^3 + 731808*x^4 + 10306296*x^5 + ... - _Michael Somos_, Oct 17 2019
-
series( 2*hypergeom([3/2, 3/2],[3],16*x), x=0, 20); # Mark van Hoeij, Apr 06 2013
-
Table[Binomial[2n + 2, n] Binomial[2n + 2, n + 1], {n, 0, 19}] (* Alonso del Arte, Apr 06 2013 *)
A186415
a(n) = binomial(2n,n)^3/(n+1).
Original entry on oeis.org
1, 4, 72, 2000, 68600, 2667168, 112698432, 5053029696, 236860767000, 11493303192800, 573327757086656, 29253930349198464, 1521079361361956032, 80361335659444000000, 4304087536829486400000, 233271979857187430688000, 12774642558686527109607000, 706008965215713532853436000, 39337406606398593529683000000
Offset: 0
-
A186415 := proc(n) binomial(2*n,n)^3/(n+1) ; end proc: # R. J. Mathar, Feb 23 2011
-
Table[Binomial[2n,n]^3/(n+1),{n,0,40}]
-
makelist(binomial(2*n,n)^3/(n+1),n,0,40);
A275654
a(n) = (5*n)!/((3*n)!*n!^2) * ((3*n/2)!*(7*n/2)!)/(5*n/2)!^2.
Original entry on oeis.org
1, 28, 2646, 316540, 42031990, 5921058528, 866486466720, 130220534668224, 19958454291525750, 3105489721784166640, 489023391870111994896, 77758775451291032116200, 12464212878673327376454304, 2011515147856766922731424000
Offset: 0
-
seq(simplify(factorial(3*n/2)*factorial(5*n)*factorial(7*n/2)/(factorial(n)^2*factorial(3*n)*factorial(5*n/2)^2)), n = 0 .. 20);
-
Table[(5 n)!/((3 n)! n!^2) ((3 n/2)! (7 n/2)!)/(5 n/2)!^2, {n, 0, 13}] (* Michael De Vlieger, Aug 07 2016 *)
-
a(n) = sum(k = 0, n, binomial(4*n-k-1,n-k)*binomial(5*n,k)^2); \\ Michel Marcus, Apr 21 2022
-
from math import factorial
from sympy import factorial2
def A275654(n): return int(factorial(5*n)*factorial2(3*n)*factorial2(7*n)//factorial(3*n)//factorial(n)**2//factorial2(5*n)**2) # Chai Wah Wu, Aug 08 2023
A067804
Triangle read by rows: T(n,k) is the number of walks (each step +-1) of length 2n which have a cumulative value of 0 last at step 2k.
Original entry on oeis.org
1, 2, 2, 6, 4, 6, 20, 12, 12, 20, 70, 40, 36, 40, 70, 252, 140, 120, 120, 140, 252, 924, 504, 420, 400, 420, 504, 924, 3432, 1848, 1512, 1400, 1400, 1512, 1848, 3432, 12870, 6864, 5544, 5040, 4900, 5040, 5544, 6864, 12870, 48620, 25740, 20592, 18480
Offset: 0
Triangle begins:
1;
2, 2;
6, 4, 6;
20, 12, 12, 20;
70, 40, 36, 40, 70;
252, 140, 120, 120, 140, 252;
...
For a walk of length 4 (=2*2), 6 are only ever 0 at step 0, 4 are zero at step 2 but not step 4 and 6 are 0 at step 4.
For n=3,k=2, T(3,2)=12 since there are 12 monotonic paths from (0,0) to (2,2) and then on to (3,3). Using E for eastward steps and N for northward steps, the 12 paths are given by EENNNE, ENENNE, ENNENE, NNEENE, NENENE, NEENNE, EENNEN, ENENEN, ENNEEN, NNEEEN, NENEEN, NEENEN. - _Dennis P. Walsh_, Mar 23 2012
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 79, ex. 3f.
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- B. C. Carlson, Power series for inverse Jacobian elliptic functions, Math. Comp., 77 (2008), 1615-1621, see p. 1617, equation (2.20).
- C. M. Grinstead and J. L. Snell, Introduction to Probability p. 482.
- R. P. Kelisky, Inverse elliptic functions and Legendre polynomials, Amer. Math. Monthly 66 (1959), pp. 480-483. MR0103993 (21 #2755).
- Michael Z. Spivey, A Combinatorial Proof for the Alternating Convolution of the Central Binomial Coefficients, The American Mathematical Monthly 121.6 (2014): 537-540. [Suggested by _Roger L. Bagula_, Jun 21 2014]
-
/* As triangle */ [[Binomial(2*k, k)*Binomial(2*n-2*k, n-k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jul 19 2015
-
Table[Table[Binomial[2k,k]Binomial[2(n-k),n-k],{k,0,n}],{n,0,10}]//Grid (* Geoffrey Critzer, Jun 30 2013 *)
T[ n_, k_] := SeriesCoefficient[ D[ InverseJacobiSN[2 x, m] / 2, x], {x, 0, 2 n}, {m, 0, k}]; (* Michael Somos, May 06 2017 *)
-
T(n, k) = binomial(2*k, k) * binomial(2*n-2*k, n-k) /* Michael Somos, Aug 20 2005 */
A069466
Triangle T(n, k) of numbers of square lattice walks that start and end at origin after 2*n steps and contain exactly k steps to the east, possibly touching origin at intermediate stages.
Original entry on oeis.org
1, 2, 2, 6, 24, 6, 20, 180, 180, 20, 70, 1120, 2520, 1120, 70, 252, 6300, 25200, 25200, 6300, 252, 924, 33264, 207900, 369600, 207900, 33264, 924, 3432, 168168, 1513512, 4204200, 4204200, 1513512, 168168, 3432, 12870, 823680, 10090080, 40360320, 63063000, 40360320, 10090080, 823680, 12870
Offset: 0
Triangle begins:
1,
2, 2,
6, 24, 6,
20, 180, 180, 20,
70, 1120, 2520, 1120, 70,
252, 6300, 25200, 25200, 6300, 252
...
T(4,2) = 2520 because there are 2520 distinct lattice walks of length 2*4=8 starting and ending at the origin and containing exactly 2 steps to the east.
For T(2,k), the lattice-path words are:
T(2,0):{EEWW, WEEW, WWEE, EWWE, WEWE, EWEW}
T(2,1):{NESW, NEWS, NSEW, NSWE, NWES, NWSE, ENSW, ENWS, ESNW, ESWN, EWNS, EWSN, SNEW, SNWE, SENW, SEWN, SWNE, SWEN, WNES, WNSE, WENS, WESN, WSNE, WSEN}
T(2,2):{NNSS, SNNS, SSNN, NSSN, SNSN, NSNS}
- Muniru A Asiru, Table of n, a(n) for n = 0..1325 (Rows n=0..50, flattened)
- A. Bostan, Calcul Formel pour la Combinatoire des Marches, Habilitation à Diriger des Recherches, Université Paris 13, 2017, page 11.
- G. Pólya, Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz, Mathematische Annalen, 84 (1921), 149-160.
-
T:=Flat(List([0..8],n->List([0..n],k->Binomial(2*n,n)*(Binomial(n,k))^2))); # Muniru A Asiru, Oct 21 2018
-
T:=(n,k)->binomial(2*n,n)*(binomial(n,k))^2: seq(seq(T(n,k),k=0..n),n=0..8); # Muniru A Asiru, Oct 21 2018
-
T[k_, r_] := Binomial[2k, k]*Binomial[k, r]^2; Table[T[k, r], {k, 0, 8}, {r, 0, k}] // Flatten (* Jean-François Alcover, Nov 21 2012, from explicit formula *)
Comments