cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 35 results. Next

A056531 Sequence remaining after a fourth round of Flavius Josephus sieve; remove every fifth term of A056530.

Original entry on oeis.org

1, 3, 7, 13, 19, 25, 27, 31, 39, 43, 49, 51, 61, 63, 67, 73, 79, 85, 87, 91, 99, 103, 109, 111, 121, 123, 127, 133, 139, 145, 147, 151, 159, 163, 169, 171, 181, 183, 187, 193, 199, 205, 207, 211, 219, 223, 229, 231, 241, 243, 247, 253, 259, 265, 267, 271, 279
Offset: 1

Views

Author

Henry Bottomley, Jun 19 2000

Keywords

Comments

Numbers {1, 3, 7, 13, 19, 25, 27, 31, 39, 43, 49, 51} mod 60.

Crossrefs

Compare A000027 for 0 rounds of sieve, A005408 after 1 round of sieve, A047241 after 2 rounds, A056530 after 3 rounds, A056531 after 4 rounds, A000960 after all rounds.
After n rounds the remaining sequence comprises A002944(n) numbers mod A003418(n+1), i.e. 1/(n+1) of them.

Programs

  • Mathematica
    LinearRecurrence[{1,0,0,0,0,0,0,0,0,0,0,1,-1},{1,3,7,13,19,25,27,31,39,43,49,51,61},60] (* Harvey P. Dale, Mar 11 2019 *)

Formula

From Chai Wah Wu, Jul 24 2016: (Start)
a(n) = a(n-1) + a(n-12) - a(n-13) for n > 13.
G.f.: x*(9*x^12 + 2*x^11 + 6*x^10 + 4*x^9 + 8*x^8 + 4*x^7 + 2*x^6 + 6*x^5 + 6*x^4 + 6*x^3 + 4*x^2 + 2*x + 1)/(x^13 - x^12 - x + 1). (End)

A099946 a(n) = lcm{1, 2, ..., n}/(n*(n-1)), n >= 2.

Original entry on oeis.org

1, 1, 1, 3, 2, 10, 15, 35, 28, 252, 210, 2310, 1980, 1716, 3003, 45045, 40040, 680680, 612612, 554268, 503880, 10581480, 9699690, 44618574, 41186376, 114406600, 106234700, 2868336900, 2677114440, 77636318760, 145568097675, 136745788725
Offset: 2

Views

Author

N. J. A. Sloane, Nov 12 2004

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> ilcm(seq(k,k=1..n))/n/(n-1): seq(a(n), n=2..37); # Emeric Deutsch, Jun 13 2005
  • Mathematica
    Table[LCM@@Range[n]/(n(n-1)), {n,2,40}] (* Harvey P. Dale, Jan 14 2011 *)
  • PARI
    a(n) = lcm(vector(n, i, i))/(n*(n-1)); \\ Michel Marcus, Jul 25 2014
  • Python
    from math import gcd
    def lcm(a, b):
        return (a * b) // gcd(a, b)
    def f(lim):
        l = 1
        for n in range(2, lim + 1):
            l = lcm(n, l)
            print(n, l // (n * (n - 1)))
    f(100) # Luke March, Jul 23 2014
    

Formula

a(n) = A003418(n)/(n*(n-1)) = A003418(n)/A002378(n-1), n >= 2.

Extensions

More terms from Emeric Deutsch, Jun 13 2005

A173185 Partial sums of A003418.

Original entry on oeis.org

1, 2, 4, 10, 22, 82, 142, 562, 1402, 3922, 6442, 34162, 61882, 422242, 782602, 1142962, 1863682, 14115922, 26368162, 259160722, 491953282, 724745842, 957538402, 6311767282, 11665996162, 38437140562, 65208284962, 145521718162, 225835151362, 2554924714162
Offset: 0

Views

Author

Jonathan Vos Post, Feb 12 2010

Keywords

Comments

From Antti Karttunen, Feb 27 2014: (Start)
For all n >= 4, a(n) mod 10 = 2 (as A003418(5) = 60, the first multiple of ten in that sequence).
For all n >= 24, a(n) mod 100 = 62 (as A003418(25) = 26771144400, the first multiple of one hundred in that sequence).
Cf. also A236856.
a(n-1) gives the position of the first element of row n in irregular tables like A238280.
(End)

Crossrefs

Programs

  • Maple
    b:= proc(n) b(n):= `if`(n=0, 1, ilcm(n, b(n-1))) end:
    a:= proc(n) a(n):= `if`(n<0, 0, a(n-1) +b(n)) end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Mar 31 2018
  • Mathematica
    Table[If[n == 0, 1, LCM @@ Range[n]], {n, 0, 50}] // Accumulate (* Jean-François Alcover, Jan 03 2022 *)
  • PARI
    a(n) = sum(k=0, n, lcm(vector(k, i, i))); \\ Michel Marcus, Mar 13 2018
  • Scheme
    (define (A173185 n) (if (< n 1) 1 (+ (A173185 (- n 1)) (A003418 n))))
    

Formula

a(n) = Sum_{i=0..n} A003418(i).

Extensions

Missing term a(9)=3922 inserted by Antti Karttunen, Feb 27 2014

A349203 Triangle read by rows, T(n, k) = (lcm_{k=0..n} binomial(n, k)) / binomial(n, k).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 1, 1, 3, 12, 3, 2, 3, 12, 10, 2, 1, 1, 2, 10, 60, 10, 4, 3, 4, 10, 60, 105, 15, 5, 3, 3, 5, 15, 105, 280, 35, 10, 5, 4, 5, 10, 35, 280, 252, 28, 7, 3, 2, 2, 3, 7, 28, 252, 2520, 252, 56, 21, 12, 10, 12, 21, 56, 252, 2520
Offset: 0

Views

Author

Peter Luschny, Nov 13 2021

Keywords

Examples

			Triangle starts:
[0]   1;
[1]   1,  1;
[2]   2,  1,  2;
[3]   3,  1,  1, 3;
[4]  12,  3,  2, 3, 12;
[5]  10,  2,  1, 1,  2, 10;
[6]  60, 10,  4, 3,  4, 10, 60;
[7] 105, 15,  5, 3,  3,  5, 15, 105;
[8] 280, 35, 10, 5,  4,  5, 10,  35, 280;
[9] 252, 28,  7, 3,  2,  2,  3,   7,  28, 252;
		

Crossrefs

Cf. A007318, A347563, A025533 (row sums), A002944 (column 0 and main diagonal).

Programs

  • Maple
    b := n -> ilcm(seq(binomial(n, k), k=0..n)):
    A349203 := (n, k) -> b(n)/binomial(n, k):
    seq(seq(A349203(n, k), k = 0..n), n = 0..11);

A363154 Triangle read by rows. The Hadamard product of A173018 and A349203.

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 3, 4, 1, 0, 12, 33, 22, 3, 0, 10, 52, 66, 26, 2, 0, 60, 570, 1208, 906, 228, 10, 0, 105, 1800, 5955, 7248, 3573, 600, 15, 0, 280, 8645, 42930, 78095, 62476, 21465, 2470, 35, 0, 252, 14056, 102256, 264702, 312380, 176468, 43824, 3514, 28, 0
Offset: 0

Views

Author

Peter Luschny, May 21 2023

Keywords

Examples

			Triangle T(n, k) starts:
[0]   1;
[1]   1,    0;
[2]   2,    1,     0;
[3]   3,    4,     1,     0;
[4]  12,   33,    22,     3,     0;
[5]  10,   52,    66,    26,     2,     0;
[6]  60,  570,  1208,   906,   228,    10,    0;
[7] 105, 1800,  5955,  7248,  3573,   600,   15,  0;
[8] 280, 8645, 42930, 78095, 62476, 21465, 2470, 35, 0;
		

Crossrefs

Cf. A173018, A349203, A002944 (column 0), A099946, A362994 (alternating row sums), A362990 (row sums).

Programs

  • Maple
    A173018 := (n, k) -> combinat[eulerian1](n, k):
    A349203 := (n, k) -> ilcm(seq(binomial(n, j), j = 0..n)) / binomial(n, k):
    A363154 := (n, k) -> A173018(n, k) * A349203(n, k):
    for n from 0 to 8 do seq(A363154(n, k), k = 0..n) od;

Formula

T(n, k) = A173018(n, k) * A349203(n, k).
Sum_{k=0..n} (-1)^k * T(n, k) = lcm(1, 2, ..., n+1)*Bernoulli(n, 1) = A362994(n).

A334721 Denominator of the product of n and the n-th harmonic alternating number, Sum_{k=1..n} (-1)^(k+1)/k.

Original entry on oeis.org

1, 1, 2, 3, 12, 10, 60, 105, 280, 252, 2520, 2310, 27720, 25740, 24024, 9009, 144144, 136136, 2450448, 11639628, 11085360, 10581480, 232792560, 223092870, 1070845776, 1029659400, 2974571600, 2868336900, 11473347600, 11090902680, 332727080400, 644658718275, 625123605600
Offset: 1

Views

Author

Petros Hadjicostas, May 08 2020

Keywords

Comments

For n = 1 to 15, we have a(n) = A002944, but a(16) = 9009 <> 45045 = A002944(16).

Examples

			The first few fractions are 1, 1, 5/2, 7/3, 47/12, 37/10, 319/60, 533/105, 1879/280, ... = A119787/A334721.
		

Crossrefs

Cf. A002944, A119787 (numerators).

Programs

  • PARI
    a(n) = denominator(n*sum(k=1, n, (-1)^(k+1)/k)); \\ Michel Marcus, May 09 2020

A362991 Triangle read by rows. T(n, k) = lcm{1, 2, ..., n+1} * Sum_{j=0..n-k} (-1)^(n-k-j) * j! * Stirling2(n - k, j) / (j + k + 1).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 0, 2, 3, 3, -2, 2, 9, 12, 12, 0, -2, 3, 8, 10, 10, 10, -10, -9, 24, 50, 60, 60, 0, 20, -30, -8, 50, 90, 105, 105, -84, 84, 18, -96, 0, 150, 245, 280, 280, 0, -84, 126, -24, -90, 18, 147, 224, 252, 252, 2100, -2100, 126, 1344, -600, -870, 343, 1568, 2268, 2520, 2520
Offset: 0

Views

Author

Peter Luschny, May 16 2023

Keywords

Comments

A variant of the Akiyama-Tanigawa algorithm for the Bernoulli numbers A164555/ A027642.

Examples

			Triangle T(n, k) starts:
[0]   1;
[1]   1,   1;
[2]   1,   2,   2;
[3]   0,   2,   3,   3;
[4]  -2,   2,   9,  12,  12;
[5]   0,  -2,   3,   8,  10,  10;
[6]  10, -10,  -9,  24,  50,  60,  60;
[7]   0,  20, -30,  -8,  50,  90, 105, 105;
[8] -84,  84,  18, -96,   0, 150, 245, 280, 280;
[9]   0, -84, 126, -24, -90,  18, 147, 224, 252, 252;
		

Crossrefs

Variant: A051714/A051715.
Cf. A362994 (column 0), A002944 (main diagonal), A164555/A027642 (Bernoulli).

Programs

  • Maple
    LCM := n -> ilcm(seq((1 + i), i = 0..n)):
    T := (n, k) -> LCM(n)*add((-1)^(n - k - j)*j!*Stirling2(n - k, j)/(j + k + 1), j = 0..n - k):
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
  • Mathematica
    A362991row[n_]:=Table[LCM@@Range[n+1]Sum[(-1)^(n-k-j)j!StirlingS2[n-k,j]/(j+k+1),{j,0,n-k}],{k,0,n}];Array[A362991row,15,0] (* Paolo Xausa, Aug 09 2023 *)
  • SageMath
    def A362991Triangle(size):  # 'size' is the number of rows.
        A, T, l = [], [], 1
        for n in range(size):
            A.append(Rational(1/(n + 1)))
            for j in range(n, 0, -1):
                A[j - 1] = j * (A[j - 1] - A[j])
            l = lcm(l, n + 1)
            T.append([a * l for a in A])
        return T
    A362991Triangle(10)

Formula

T(n, 0) = lcm(1, 2, ..., n+1) * Bernoulli(n, 1).

A025532 a(n) is the sum of exponents in the prime factorization of lcm{C(n,0), C(n,1), ..., C(n,n)}.

Original entry on oeis.org

0, 0, 1, 1, 3, 2, 4, 3, 5, 5, 7, 5, 8, 7, 7, 6, 10, 8, 11, 9, 10, 10, 12, 9, 12, 12, 12, 12, 15, 13, 16, 13, 16, 16, 16, 14, 18, 17, 17, 15, 19, 17, 20, 18, 18, 19, 21, 17, 21, 20, 21, 20, 23, 20, 22, 20, 22, 22, 24, 21, 25, 24, 23, 21, 25, 24, 27, 25, 26, 25, 28, 24, 29, 28, 27
Offset: 0

Views

Author

Keywords

Programs

  • Mathematica
    {0, 0}~Join~Table[Total@ FactorInteger[LCM @@ Array[Binomial[n, #] &, n]][[All, -1]], {n, 2, 74}] (* Michael De Vlieger, Jan 13 2018 *)
  • PARI
    for(n=0, 100, l=1; for(k=0, n, l=lcm(l,binomial(n,k))); v=factor(l); s=0; for(k=1, matsize(v)[1], s=s+v[k,2]); print1(s","))
    
  • PARI
    a(n) = bigomega(lcm(vector(n+1, k, binomial(n, k-1)))); \\ Michel Marcus, Jan 06 2018

Formula

a(n) = A025528(n + 1) - A001222(n + 1). - Luc Rousseau, Jan 04 2018
a(n) = A001222(A002944(n+1)). - Michel Marcus, Jan 05 2018

Extensions

More terms from Ralf Stephan, Mar 28 2003

A056609 a(n) = rad(n!)/rad(A001142(n)) where rad(n) is the squarefree kernel of n, A007947(n).

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 2, 3, 5, 1, 1, 1, 7, 5, 2, 1, 3, 1, 5, 7, 11, 1, 1, 5, 13, 3, 7, 1, 1, 1, 2, 11, 17, 7, 1, 1, 19, 13, 1, 1, 7, 1, 11, 1, 23, 1, 1, 7, 5, 17, 13, 1, 3, 11, 1, 19, 29, 1, 1, 1, 31, 1, 2, 13, 11, 1, 17, 23, 1, 1, 1, 1, 37, 5, 19, 11, 13, 1, 1, 3, 41, 1, 1, 17, 43, 29, 11, 1, 1, 13
Offset: 1

Views

Author

Labos Elemer, Aug 07 2000

Keywords

Comments

The previous name, which does not match the data as observed by Luc Rousseau, was: Quotient of squarefree kernels of A002944(n) and A001405.
a(n) is the unique prime p not greater than n missing in the prime factorization of A001142(n), if such a prime exists; a(n) is 1 otherwise. - Luc Rousseau, Jan 01 2019

Examples

			From _Luc Rousseau_, Jan 02 2019: (Start)
In Pascal's triangle,
- row n=3 (1 3 3 1) contains no number with prime factor 2, so a(3) = 2;
- row n=4 (1 4 6 4 1) contains, for all p prime <= 4, a multiple of p, so a(4) = 1;
- row n=5 (1 5 10 10 5 1) contains no number with prime factor 3, so a(5) = 3;
etc.
(End)
		

Crossrefs

Programs

  • Mathematica
    L[n_] := Table[Binomial[n, k], {k, 1, Floor[n/2]}]
    c[n_] := Complement[Prime /@ Range[PrimePi[n]], First /@ FactorInteger[Times @@ L[n]]]
    a[n_] := Module[{x = c[n]}, If[x == {}, 1, First[x]]]
    Table[a[n], {n, 1, 100}]
    (* Luc Rousseau, Jan 01 2019 *)
  • PARI
    rad(n) = factorback(factorint(n)[, 1]); \\ A007947
    b(n) = prod(m=1, n, binomial(n, m)); \\ A001142
    a(n) = rad(n!)/rad(b(n)); \\ Michel Marcus, Jan 02 2019

Formula

a(n) = A034386(n) / A056606(n). - Sean A. Irvine, Apr 24 2022

Extensions

Definition and example changed by Luc Rousseau, Jan 02 2019

A064451 LCM of totients of binomial coefficients C(n,j), j = 0..n.

Original entry on oeis.org

1, 1, 2, 2, 4, 8, 24, 24, 72, 288, 240, 240, 1440, 2880, 2880, 11520, 23040, 46080, 207360, 276480, 82944, 829440, 2280960, 9123840, 15206400, 60825600, 273715200, 1642291200, 766402560, 7664025600, 1916006400, 1277337600
Offset: 1

Views

Author

Labos Elemer, Oct 02 2001

Keywords

Examples

			For n=4, the binomial coefficients C(4,j) are 1, 4, 6, 4, and 1. The totients are 1, 2, 2, 2, and 1.  So a(4) = lcm of 1, 2, 2, 2, 1 = 2. - _Michael B. Porter_, Jun 25 2018
		

Crossrefs

Cf. A002944 (see 1st comment there).

Programs

  • Mathematica
    Table[LCM@@Table[EulerPhi[Binomial[n,j]],{j,0,n}],{n,40}] (* Harvey P. Dale, Nov 04 2019 *)
  • PARI
    a(n) = lcm(vector(n+1, k, eulerphi(binomial(n, k-1)))); \\ Michel Marcus, Jun 24 2018

Extensions

Previous Mathematica program replaced by Harvey P. Dale, Nov 04 2019
Previous Showing 21-30 of 35 results. Next