cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 92 results. Next

A231546 Numbers k such that sigma(k) = sigma(k-1).

Original entry on oeis.org

15, 207, 958, 1335, 1365, 1635, 2686, 2975, 4365, 14842, 18874, 19359, 20146, 24958, 33999, 36567, 42819, 56565, 64666, 74919, 79827, 79834, 84135, 92686, 109215, 111507, 116938, 122074, 138238, 147455, 161002, 162603, 166935, 174718, 190774, 193894, 201598
Offset: 1

Views

Author

Jaroslav Krizek, Nov 11 2013

Keywords

Comments

Also, numbers k such that k = antisigma(k) - antisigma(k-1), where antisigma(k) = A024816(k) = the sum of the non-divisors of k that are between 1 and k.

Examples

			15 = antisigma(15) - antisigma(14) = 96 - 81.
		

Crossrefs

Cf. A002961, A024816 (antisigma(n)), A231545 (numbers n such that antisigma(n) = antisigma(n-1)).

Programs

  • Mathematica
    SequencePosition[DivisorSigma[1,Range[210000]],{x_,x_}][[;;,2]] (* Harvey P. Dale, May 28 2024 *)
  • PARI
    n=0;sp=sigma(2);for(k=3,oo,my(s=sigma(k));if(s==sp,print1(k,", ");n++;if(n>36,break));sp=s) \\ Hugo Pfoertner, Mar 06 2020

Formula

a(n) = A002961(n) + 1.

Extensions

More terms from Hugo Pfoertner, Mar 06 2020

A238380 Numbers k such that the average of the divisors of k and k+1 is the same.

Original entry on oeis.org

5, 14, 91, 1334, 1634, 2685, 3478, 5452, 9063, 13915, 16225, 20118, 20712, 33998, 42818, 47795, 64665, 79338, 84134, 103410, 106144, 109214, 111683, 122073, 123497, 133767, 166934, 170884, 203898, 224561, 228377, 267630, 289454, 383594, 384857, 391348, 440013
Offset: 1

Views

Author

Giovanni Resta, Feb 25 2014

Keywords

Comments

The average of the divisors of n is equal to sigma(n)/tau(n).
Up to 5*10^12, there are only 3 terms for which the mean is not an integer, namely 254641594575, 280895287491 and 328966666100.

Examples

			91 is a term since the average of the divisors of 91 and 92 is the same. Indeed, (1+7+13+91)/4 = (1+2+4+23+46+92)/6.
		

Crossrefs

Cf. A002961.

Programs

  • Mathematica
    av[n_] := DivisorSigma[1,n]/DivisorSigma[0,n]; Select[Range[10^5], av[#] == av[# + 1] &]
    SequencePosition[Table[DivisorSigma[1,n]/DivisorSigma[0,n],{n,450000}],{x_,x_}][[All,1]] (* Harvey P. Dale, Jun 01 2022 *)
  • Python
    from sympy import divisors
    from fractions import Fraction
    def aupto(limit):
      alst, prev_divavg = [], 1
      for n in range(2, limit+2):
        divs = divisors(n)
        divavg = Fraction(sum(divs), len(divs))
        if divavg == prev_divavg: alst.append(n-1)
        prev_divavg = divavg
      return alst
    print(aupto(440013)) # Michael S. Branicky, May 14 2021

A058072 Numbers k such that sigma(k) divides sigma(k+1), where sigma(k) is sum of positive divisors of k.

Original entry on oeis.org

1, 5, 14, 125, 206, 957, 1253, 1334, 1364, 1634, 1673, 1919, 2685, 2759, 2974, 3127, 4364, 5191, 7615, 11219, 12035, 14841, 18873, 19358, 20145, 24957, 27089, 33998, 36566, 42818, 43817, 47795, 48559, 49955, 50039, 56564, 56975, 58373, 58463
Offset: 1

Views

Author

Leroy Quet, Nov 11 2000

Keywords

Comments

The quotient (sigma(k+1)/sigma(k)) is equal to 1, 2, 3, 4 or 5 for the first 5000 terms. - Donovan Johnson, Oct 21 2012

Examples

			5 is included because sigma(5) = 6 divides sigma(6) = 12.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^5], Divisible[DivisorSigma[1, # + 1], DivisorSigma[1, #]] &] (* Michael De Vlieger, Sep 03 2017 *)
  • PARI
    isok(n) = !(sigma(n+1) % sigma(n)); \\ Michel Marcus, Sep 04 2017

Extensions

More terms from Benoit Cloitre, Jul 27 2002

A324295 Numbers k such that s(k) = s(k+1) where s(k) is the sum of divisors of k that are smaller than sqrt(k) (A070039).

Original entry on oeis.org

2, 3, 4, 186, 318, 434, 473, 582, 730, 978, 1024, 1035, 1245, 1357, 1397, 1506, 1661, 1902, 2085, 2116, 2224, 2329, 2453, 2505, 2506, 2770, 2954, 3144, 3345, 3377, 3624, 3641, 3765, 3790, 3882, 4037, 4172, 4438, 4898, 4938, 4975, 5221, 6126, 6285, 6312, 6356
Offset: 1

Views

Author

Amiram Eldar, Sep 03 2019

Keywords

Examples

			186 is in the sequence since A070039(186) = A070039(187) = 12.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := DivisorSum[n, # &, # < Sqrt[n] &]; seq={}; s1 = 0; Do[s2 = s[n]; If[s1 == s2, AppendTo[seq, n - 1]]; s1 = s2, {n, 2, 6500}]; seq

A338452 Numbers k such that k and k+1 have the same total binary weight of their divisors (A093653).

Original entry on oeis.org

3, 4, 7, 20, 31, 57, 94, 98, 118, 122, 127, 201, 213, 218, 230, 242, 243, 244, 334, 384, 393, 423, 429, 481, 565, 603, 633, 694, 704, 729, 766, 844, 921, 1138, 1141, 1221, 1262, 1401, 1533, 1654, 1726, 1761, 1837, 1838, 1862, 1882, 1942, 2162, 2245, 2361, 2362
Offset: 1

Views

Author

Amiram Eldar, Oct 28 2020

Keywords

Comments

Numbers k such that A093653(k) = A093653(k+1).
The Mersenne primes (A000668) are terms since if 2^p - 1 is a prime then A093653(2^p-1) = A093653(2^p) = p+1.

Examples

			3 is a term since A093653(3) = A093653(4) = 3.
		

Crossrefs

A000668 is a subsequence.

Programs

  • Mathematica
    f[n_] := DivisorSum[n, DigitCount[#, 2, 1] &]; s = {}; f1 = f[1]; Do[f2 = f[n]; If[f1 == f2, AppendTo[s, n - 1]]; f1 = f2, {n, 2, 240}]; s

A053215 Sum of divisors of those numbers n such that n and n+1 have the same sum of divisors.

Original entry on oeis.org

24, 312, 1440, 2160, 2688, 2640, 4320, 4464, 7644, 22932, 28314, 29040, 34560, 37440, 51840, 56160, 65280, 100800, 115200, 114912, 120960, 120960, 138240, 153216, 194400, 168960, 178560, 186048, 207360, 221184, 244800, 280800, 276480
Offset: 1

Views

Author

Asher Auel, Jan 11 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Transpose[Select[{DivisorSigma[1,First[#]],DivisorSigma[1,Last[#]]}&/@ Partition[Range[280000],2,1],First[#]==Last[#]&]][[1]] (* Harvey P. Dale, May 07 2012 *)
    DivisorSigma[1,#]&/@SequencePosition[DivisorSigma[1,Range[280000]],{x_,x_}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 21 2017 *)

Formula

a(n) = sigma(A002961(n))

A077087 Numbers k such that sigma(k+1) = 3 * sigma(k).

Original entry on oeis.org

1, 1919, 2759, 11219, 27089, 50039, 58463, 100127, 113831, 115289, 120203, 131879, 148511, 233729, 244319, 308039, 461099, 554063, 596447, 1406303, 1486619, 2285519, 2880989, 5138783, 5369111, 5521619, 5736743, 6621383, 7496279, 7683191, 8571527, 8848619
Offset: 1

Views

Author

Labos Elemer, Oct 31 2002

Keywords

Examples

			k = 1: sigma(2)/sigma(1) = 3/1 = 3;
k = 9563231: sigma(k+1)/sigma(k) = 31026240/10342080 = 3.
		

Crossrefs

Cf. A000203, A002961, A067081, A077086, A272027 (3*sigma(n)).

Programs

A163193 Numbers k such that sigma(k) = 2*sigma(k+1).

Original entry on oeis.org

12, 70, 88, 204, 220, 1750, 1888, 2958, 8142, 8632, 9114, 14664, 18414, 18762, 20118, 20712, 25194, 45520, 64206, 65652, 65964, 77814, 79338, 79824, 85096, 90804, 103410, 103644, 117822, 158946, 163938, 176364, 185776, 186612, 194416, 202656, 203898, 245632
Offset: 1

Views

Author

Keywords

Comments

The cases sigma(k) = 3*sigma(k+1) are rarer: k=180, 12000, 30996, 47940, ... [R. J. Mathar, Jul 25 2009]

Crossrefs

Programs

  • Mathematica
    f[n_]:=DivisorSigma[1,n]; lst={};Do[If[f[n]==f[n+1]*2,AppendTo[lst,n]], {n,9!}];lst

Formula

{k: A000203(k) = 2*A000203(k+1)}.

Extensions

Edited by R. J. Mathar, Jul 25 2009

A164522 Numbers k such that sigma_odd(k) = sigma_odd(k+1), where sigma_odd(k) is the sum of the odd divisors of k (A000593).

Original entry on oeis.org

1, 27089, 115289, 233729, 2529090, 2880989, 14059709, 17192909, 17540250, 18693990, 34902630, 54722249, 58517910, 82200689, 83087730, 92991990, 93623250, 93862230, 96578369, 111681990, 112244369, 155120129, 206450369, 269626769, 293182469, 303206310, 324764910
Offset: 1

Views

Author

Amiram Eldar, Aug 12 2019

Keywords

Examples

			27089 is in the sequence since A000593(27089) = A000593(27089 + 1) = 27456.
		

Crossrefs

Programs

  • Magma
    v:=[&+[d:d in Divisors(m)|IsOdd(d)] :m in [1..5000000]]; [k:k in [1..#v-1]| v[k] eq v[k+1]]; // Marius A. Burtea, Aug 12 2019
  • Mathematica
    f[p_, e_] := If[p == 2, 1, (p^(e+1)-1)/(p-1)]; s[1] = 1; s[1] = 1; s[n_] := Times @@ (f @@@ FactorInteger[n]); s1=0; seq={}; Do[s2 = s[n]; If[s2 == s1, AppendTo[ seq, n-1]]; s1 = s2, {n, 1, 10^6}]; seq

A164557 Numbers k such that s(k) = s(k+1), where s(k) is the sum of divisors d of k such that k/d is odd (A002131).

Original entry on oeis.org

3, 6, 7, 10, 22, 31, 46, 58, 69, 82, 106, 127, 140, 154, 160, 166, 178, 226, 262, 286, 346, 358, 382, 466, 478, 502, 562, 586, 718, 748, 781, 838, 862, 886, 982, 1001, 1018, 1066, 1186, 1282, 1299, 1306, 1318, 1366, 1438, 1486, 1522, 1614, 1618, 1672, 1704, 1822
Offset: 1

Views

Author

Amiram Eldar, Aug 12 2019

Keywords

Examples

			3 is in the sequence since A002131(3) = A002131(3 + 1) = 4.
		

Crossrefs

Programs

  • Magma
    v:=[&+[d:d in Divisors(m)|IsOdd(Floor(m/d))] :m in [1..2000]]; [k:k in [1..#v-1]| v[k] eq v[k+1]]; // Marius A. Burtea, Aug 12 2019
  • Mathematica
    f[p_, e_] := If[p == 2, p^e, (p^(e+1)-1)/(p-1)]; s[1] = 1; s[1] = 1; s[n_] := Times @@ (f @@@ FactorInteger[n]); s1=0; seq={}; Do[s2 = s[n]; If[s2 == s1, AppendTo[seq, n-1]]; s1 = s2, {n, 1, 2000}]; seq
Previous Showing 21-30 of 92 results. Next