cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 92 results. Next

A242962 a(1) = a(2) = 0; for n >= 3: a(n) = (n*(n+1)/2) mod antisigma(n) = A000217(n) mod A024816(n).

Original entry on oeis.org

0, 0, 0, 1, 6, 3, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 124, 57, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 127, 84
Offset: 1

Views

Author

Jaroslav Krizek, May 29 2014

Keywords

Comments

A000217(n) = triangular numbers, A024816(n) = sum of numbers less than n which do not divide n.
a(n) = sigma(n) = A000203(n) for n = 5 and n>= 7 (see A242963).

Examples

			a(6) = 3 because A000217(6) mod A024816(6) = 21 mod 9 = 3.
		

Crossrefs

Programs

  • Magma
    [((n*(n+1)div 2) mod (n*(n+1)div 2-SumOfDivisors(n))): n in [3..1000]]
  • Mathematica
    Array[If[# < 3, 0, Mod[PolygonalNumber@ #, Total@ Complement[Range@ #, Divisors@ #]]] &, 65] (* Michael De Vlieger, Jan 28 2020 *)

A242963 Numbers n such that A242962(n) = sigma(n) = A000203(n).

Original entry on oeis.org

5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71
Offset: 1

Views

Author

Jaroslav Krizek, May 29 2014

Keywords

Comments

A242962(n) = (n*(n+1)/2) mod antisigma(n) = A000217(n) mod A024816(n).
Union of number 5 and numbers >= 7.
Conjecture: this sequence lists all the positive integers n such that, for some integer k, (sin(k*Pi/n))^2 is irrational. - Lorenzo Sauras Altuzarra, Jan 27 2020

Crossrefs

Programs

  • Magma
    [n: n in [3..100000] | ((n*(n+1)div 2) mod (n*(n+1)div 2-SumOfDivisors(n))) eq (SumOfDivisors(n))]
  • Mathematica
    Select[Range[3, 71], DivisorSigma[1, #] == Mod[PolygonalNumber@ #, Total@ Complement[Range@ #, Divisors@ #]] &] (* Michael De Vlieger, Jan 28 2020 *)

A358817 Numbers k such that A046660(k) = A046660(k+1).

Original entry on oeis.org

1, 2, 5, 6, 10, 13, 14, 21, 22, 29, 30, 33, 34, 37, 38, 41, 42, 44, 46, 49, 57, 58, 61, 65, 66, 69, 70, 73, 75, 77, 78, 80, 82, 85, 86, 93, 94, 98, 101, 102, 105, 106, 109, 110, 113, 114, 116, 118, 122, 129, 130, 133, 135, 137, 138, 141, 142, 145, 147, 154, 157
Offset: 1

Views

Author

Amiram Eldar, Dec 02 2022

Keywords

Comments

First differs from its subsequence A007674 at n=18.
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 5, 38, 369, 3655, 36477, 364482, 3644923, 36449447, 364494215, 3644931537, ... . Apparently, the asymptotic density of this sequence exists and equals 0.36449... .

Crossrefs

Cf. A046660.
Subsequences: A007674, A052213, A085651, A358818.
Similar sequences: A002961, A005237, A006049, A045920.

Programs

  • Mathematica
    seq[kmax_] := Module[{s = {}, e1 = 0, e2}, Do[e2 = PrimeOmega[k] - PrimeNu[k]; If[e1 == e2, AppendTo[s, k - 1]]; e1 = e2, {k, 2, kmax}]; s]; seq[160]
  • PARI
    e(n) = {my(f = factor(n)); bigomega(f) - omega(f)};
    lista(nmax) = {my(e1 = e(1), e2); for(n=2, nmax, e2=e(n); if(e1 == e2, print1(n-1,", ")); e1 = e2);}

A054005 Sum of divisors of k such that k and k+1 have the same number and sum of divisors.

Original entry on oeis.org

24, 2160, 2640, 4320, 51840, 65280, 115200, 138240, 194400, 186048, 276480, 483840, 622080, 700416, 950400, 984960, 1118880, 1128960, 1612800, 2661120, 3937248, 3617280, 5019840, 6128640, 5806080, 7375680, 8467200, 11583936
Offset: 1

Views

Author

Asher Auel, Jan 12 2000

Keywords

Examples

			See example in A054004.
		

Crossrefs

Programs

  • Mathematica
    Select[Partition[Table[{n,DivisorSigma[0,n],DivisorSigma[1,n]},{n,116*10^5}],2,1],#[[1,2]]== #[[2,2]] && #[[1,3]]==#[[2,3]]&][[All,1,3]] (* Harvey P. Dale, May 16 2023 *)

Formula

a(n) = sigma(A054004(n)).

Extensions

More terms from Jud McCranie, Oct 15 2000
Definition clarified by Harvey P. Dale, May 16 2023

A054006 Number of divisors of k and k+1 which have the same number and sum of divisors.

Original entry on oeis.org

4, 8, 8, 8, 8, 8, 16, 16, 16, 8, 16, 16, 16, 16, 16, 16, 16, 16, 32, 16, 16, 16, 16, 32, 16, 16, 16, 24, 16, 16, 16, 32, 32, 32, 16, 16, 32, 16, 32, 16, 16, 32, 32, 16, 32, 16, 16, 16, 16, 16, 32, 32, 16, 32, 16, 16, 64, 32, 16, 32, 16, 32, 16, 64, 32, 32, 16, 32, 32, 32, 32
Offset: 1

Views

Author

Asher Auel, Jan 12 2000

Keywords

Examples

			See example in A054004.
		

Crossrefs

Programs

  • Mathematica
    Select[Partition[Array[DivisorSigma[{0, 1}, #] &, 10^6], 2, 1], SameQ @@ # &][[All, 1, 1]] (* Michael De Vlieger, Nov 21 2019 *)

Formula

a(n) = tau(A054004(n)).

Extensions

More terms from Jud McCranie, Oct 15 2000

A054007 Numbers k such that k and k+1 have the same sum but an unequal number of divisors.

Original entry on oeis.org

206, 957, 1364, 2974, 4364, 14841, 18873, 19358, 20145, 24957, 36566, 56564, 74918, 79826, 79833, 92685, 111506, 116937, 138237, 147454, 161001, 162602, 174717, 190773, 193893, 201597, 230390, 274533, 347738, 416577, 422073, 430137
Offset: 1

Views

Author

Asher Auel, Jan 12 2000

Keywords

Examples

			The divisors of 206 are 1, 2, 103, 206, so tau(206) = 4 and sigma(206) = 312; the divisors of 207 are 1, 3, 9, 23, 69, 207, so tau(207) = 6 and sigma(207) = 312. Hence, the integer 206 belongs to this sequence. - _Bernard Schott_, Oct 18 2019
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100000], DivisorSigma[0, #] != DivisorSigma[0, # + 1] && DivisorSigma[1, #] == DivisorSigma[1, # + 1] &] (* Jayanta Basu, Mar 20 2013 *)

Formula

Members of A002961 which are not members of A054004

Extensions

More terms from Jud McCranie, Oct 15 2000

A175876 Numbers k such that sigma(k+2) = 2*sigma(k).

Original entry on oeis.org

118, 1558, 2938, 17758, 19918, 32218, 33838, 55963, 71038, 186778, 308038, 511498, 523774, 553498, 699358, 838213, 1048903, 1159378, 1328938, 1333246, 1700038, 2462686, 2703886, 2956078, 3115318, 3561094, 3764206, 3972694, 7625878, 7852918, 8048962
Offset: 1

Views

Author

Zak Seidov, Oct 06 2010

Keywords

Comments

a(1) = A175874(2).

Crossrefs

Programs

  • Mathematica
    Do[If[DivisorSigma[1, n+2]==2 DivisorSigma[1, n], Print[n]], {n, 2, 10^7}] (* or *) Select[Range[8000000], DivisorSigma[1, # + 2] == 2 DivisorSigma[1, #]&](* Vincenzo Librandi, Apr 04 2013 *)

A333261 Numbers k such that A071324(k) = A071324(k+1).

Original entry on oeis.org

1, 5, 51, 68, 87, 116, 171, 176, 591, 2108, 2403, 7143, 8787, 9308, 18548, 19371, 27387, 32127, 34887, 37928, 40131, 140667, 180548, 192428, 200996, 433311, 521727, 934449, 2476671, 2617563, 3960896, 8198156, 9670748, 11892512, 16585748, 19113651, 25367396, 25643012
Offset: 1

Views

Author

Amiram Eldar, Mar 13 2020

Keywords

Comments

From Shreyansh Jaiswal, Jun 14 2025: (Start)
If the density of the set containing all even terms exists, then it is less than 0.15. (Proposition 3 in Jaiswal.)
Let k denote any even term. Then, the least prime factor of k+1 is either 3 or 5. (Theorem 11 in Jaiswal.)
Each even term satisfies at least one of three specific congruences. (Theorem 2 in Jaiswal.)
10519952096 and 16159802432 are also terms of this sequence.
Conjecture: There are infinitely many terms of this sequence. (Conjecture 15 in Jaiswal.) (End)

Examples

			1 is a term since A071324(1) = A071324(2) = 1.
5 is a term since A071324(5) = A071324(6) = 4.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Plus @@ (-(d = Divisors[n])*(-1)^(Range[Length[d],1,-1])); seq = {}; f1 = f[1]; Do[f2 = f[n]; If[f1 == f2, AppendTo[seq, n-1]]; f1 = f2, {n, 2, 50000}]; seq
    SequencePosition[Table[Total[Times@@@Partition[Riffle[Reverse[Divisors[n]],{1,-1},{2,-1,2}],2]],{n,2565*10^4}],{x_,x_}][[All,1]] (* Harvey P. Dale, Nov 06 2022 *)
  • Python
    from sympy import divisors;  from functools import lru_cache
    cached_divisors = lru_cache()(divisors)
    def c(n):  return sum(d if i%2==0 else -d for i, d in enumerate(reversed(cached_divisors(n))))
    for n in range(1,2201):
        if c(n) == c(n+1):
            print(n, end=", ") # Shreyansh Jaiswal, Apr 14 2025

A348346 Numbers k such that k and k+1 have the same positive sum of noninfinitary divisors (A348271).

Original entry on oeis.org

20150, 52767, 99296, 835515, 1241504, 2199392, 6294015, 11158496, 12770450, 17016416, 19127907, 20128544, 23686748, 24790688, 26580554, 33366015, 34385247, 39687651, 42106976, 44157087, 45466676, 59825349, 60832449, 73780244, 75268775, 81654650, 84696849, 111457213
Offset: 1

Views

Author

Amiram Eldar, Oct 13 2021

Keywords

Comments

Numbers k such that A348271(k) = A348271(k+1) > 0.
The terms are restricted to have a positive sum of noninfinitary divisors, since there are many consecutive numbers without noninfinitary divisors (these are the terms of A036537).

Examples

			20150 is a term since A348271(20150) = A348271(20151) = 6720.
		

Crossrefs

Subsequence of A162643.
Similar sequences: A002961, A064115, A064125, A293183, A306985.

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ f @@@ FactorInteger[n]; s[n_] := DivisorSigma[1,n] - isigma[n]; Select[Range[10^5], (s1 = s[#]) > 0 && s1 == s[# + 1] &]

A054002 Number of divisors of n such that n and n-1 have the same sum of divisors.

Original entry on oeis.org

4, 6, 4, 8, 16, 8, 8, 12, 12, 8, 4, 10, 8, 4, 8, 12, 8, 16, 16, 16, 16, 8, 16, 12, 16, 16, 8, 8, 4, 16, 8, 24, 16, 4, 16, 8, 4, 32, 8, 16, 16, 16, 8, 8, 8, 8, 16, 32, 8, 8, 16, 16, 16, 12, 16, 16, 12, 8, 48, 32, 8, 24, 24, 16, 16, 16, 8, 16, 24, 64, 8, 16, 16, 16, 16, 64, 24, 32, 60
Offset: 1

Views

Author

Asher Auel, Jan 12 2000

Keywords

Crossrefs

Programs

  • Magma
    [#Divisors(n):n in [2..3500000]| SumOfDivisors(n) eq SumOfDivisors(n-1)]; // Marius A. Burtea, Sep 07 2019

Formula

a(n) = tau(A002961(n) + 1).

Extensions

More terms from Naohiro Nomoto, Jun 23 2001
Previous Showing 31-40 of 92 results. Next