cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A350790 Number of digraphs on n labeled nodes with a global source and sink.

Original entry on oeis.org

1, 2, 12, 432, 64240, 33904800, 61721081184, 394586260943616, 9146766152111641344, 792073976107698469670400, 261895415169919230764987845120, 335402460348866803020064114666616832, 1678893205649791601327398844631544110815232
Offset: 1

Views

Author

Andrew Howroyd, Jan 16 2022

Keywords

Comments

This sequence differs from A049524 in that the source and sink are restricted to being single nodes.

Crossrefs

The unlabeled version is A350794.
Row sums of A350791.

Programs

  • Mathematica
    nn = 15; strong = Select[Import["https://oeis.org/A003030/b003030.txt", "Table"],
       Length@# == 2 &][[All, 2]]; s[z_] := Total[strong Table[z^i/i!, {i, 1, 58}]];
    ggf[egf_] := Normal[Series[egf, {z, 0, nn}]] /. Table[z^i -> z^i/2^Binomial[i, 2], {i, 1, nn + 1}];egf[ggf_] := Normal[Series[ggf, {z, 0, nn}]] /.Table[z^i -> z^i*2^Binomial[i, 2], {i, 1, nn + 1}];Table[n!, {n, 0, nn}] CoefficientList[
    Series[z - z^2 + Exp[(u - 1) (v - 1) s[ z]] egf[ggf[z Exp[(u - 1) s[z]]]*1/ggf[Exp[-s[z]]]*ggf[z Exp[(v - 1) s[ z]]]] /. {u -> 0, v -> 0}, {z, 0, nn}], z] (* Geoffrey Critzer, Apr 17 2023 *)
  • PARI
    InitFinallyV(12) \\ See A350791 for program code.

Formula

For n >= 3, a(n) = 2*n*(n-1)*A003030(n-1) (Robinson equation 22). - Geoffrey Critzer, Apr 17 2023

A339807 Irregular triangle read by rows: T(n,k) (n>=2, k>=1) is the number of strong digraphs on n nodes with k descents.

Original entry on oeis.org

1, 2, 11, 5, 10, 154, 540, 581, 272, 49, 122, 3418, 27304, 90277, 150948, 150519, 95088, 37797, 8714, 893, 3346, 142760, 1938178, 12186976, 42696630, 94605036, 145009210, 161845163, 134933733, 84656743, 39632149, 13481441, 3156845, 455917, 30649
Offset: 2

Views

Author

Hugo Pfoertner, Dec 28 2020

Keywords

Comments

T(n,1) = A005321(n-1). Length of row n = binomial(n,2). It appears that T(n,binomial(n,2)) = A348901(n-1). - Geoffrey Critzer, Feb 12 2025

Examples

			Triangle begins:
 1;
 2, 11, 5;
 10, 154, 540, 581, 272, 49;
 122, 3418, 27304, 90277, 150948, 150519, 95088, 37797, 8714, 893;
 3346, 142760, 1938178, 12186976, 42696630, 94605036, 145009210, 161845163, 134933733, 84656743, 39632149, 13481441, 3156845, 455917, 30649;
 ...
		

Crossrefs

Cf. A003030 (row sums), A057273 (another version of the same triangle), A307049, A339590, A005321, A000217.

Programs

  • Mathematica
    nn = 8; B[n_] := FunctionExpand[QFactorial[n, (1 + u y)/(1 + y)]] (1 + y)^Binomial[n, 2]; g[z_] := Sum[(1 + u y)^Binomial[n, 2] z^n/FunctionExpand[QFactorial[n, (1 + u y)/(1 + y)]], {n, 0, nn}]; egf[eggf_] := Normal[Series[eggf, {z, 0, nn}]] /.Table[z^i -> z^i*B[i]/i!, {i, 1, nn + 1}]; Map[Drop[#, 1] &, Drop[Map[CoefficientList[#, u] &, Table[n!, {n, 0, nn}]CoefficientList[Series[-Log[egf[1/g[z]]], {z, 0, nn}], z] /. y -> 1], 2]] // Grid (* Geoffrey Critzer, Feb 12 2025 *)

Extensions

Row 2 added by N. J. A. Sloane, Dec 29 2020

A350730 Number of strongly connected oriented graphs on n labeled nodes.

Original entry on oeis.org

1, 0, 2, 66, 7998, 2895570, 3015624078, 8890966977354, 74079608267459142, 1754419666770364130730, 119163820122708911990211222, 23431180614718394105521543222866, 13448652672256961901980839022683943838, 22684139279519345808802725789494254587951810
Offset: 1

Views

Author

Andrew Howroyd, Jan 11 2022

Keywords

Crossrefs

The unlabeled version is A350489.
Row sums of A350731.

Programs

  • PARI
    StrongO(14) \\ See A350731 for program code.

A086366 Number of labeled n-node digraphs in which every node belongs to a directed cycle.

Original entry on oeis.org

1, 0, 1, 18, 1699, 587940, 750744901, 3556390155318, 63740128872703879, 4405426607409460017480, 1190852520892329350092354441, 1270598627613805616203391468226138, 5381238039128882594932248239301142751179, 90766634183072089515270648224715368261615375340
Offset: 0

Views

Author

Keywords

Comments

These are the directed graphs whose strong components exclude a single vertex. - Andrew Howroyd, Jan 15 2022

Crossrefs

Column k=0 of A361592.
The unlabeled version is A361586.

Programs

  • PARI
    G(p)={my(n=serprec(p,x)); serconvol(p, sum(k=0, n-1, x^k/2^(k*(k-1)/2), O(x^n)))}
    U(p)={my(n=serprec(p,x)); serconvol(p, sum(k=0, n-1, x^k*2^(k*(k-1)/2), O(x^n)))}
    DigraphEgf(n)={sum(k=0, n, 2^(k*(k-1))*x^k/k!, O(x*x^n) )}
    seq(n)={Vec(serlaplace(U(1/G(exp(x+log(U(1/G(DigraphEgf(n)))))))))} \\ Andrew Howroyd, Jan 15 2022

Extensions

a(0)=1 prepended and terms a(12) and beyond from Andrew Howroyd, Jan 15 2022

A355612 Number of labeled digraphs on [n] such that for any pair C_1,C_2 of distinct strongly connected components, if x in C_1 is directed to y in C_2 then every vertex in C_1 is directed to every vertex in C_2.

Original entry on oeis.org

1, 1, 4, 52, 2524, 629296, 750098464, 3540134362192, 63605185617860464, 4402130837352016607296, 1190565802204629673473661504, 1270503156085666608161173288964992, 5381113705726490960372769906727545572224, 90765998703828737395601069325546106634460887296, 6109068274998388232409260496587163340177606642565219584
Offset: 0

Views

Author

Geoffrey Critzer, Jul 09 2022

Keywords

Comments

Here a digraph can have both a directed edge from x to y and y to x but no self loops are allowed.

Crossrefs

Programs

  • Mathematica
    nn = 14; d[x_] := Total[Cases[Import["https://oeis.org/A003024/b003024.txt",
          "Table"], {, }][[All, 2]]*Table[x^(i - 1)/(i - 1)!, {i, 1, 41}]];
    s[x_] := Total[ Prepend[Cases[Import["https://oeis.org/A003030/b003030.txt",
           "Table"], {, }][[All, 2]], 1]* Table[x^(i - 1)/(i - 1)!, {i, 1, 59}]];
    Range[0, nn]! CoefficientList[Series[d[s[x] - 1], {x, 0, nn}], x]

Formula

E.g.f.: D(S(x)-1) where D(x),S(x) are the e.g.f.'s for A003024 and A003030 respectively.

A361269 Triangular array read by rows. T(n,k) is the number of binary relations on [n] containing exactly k strongly connected components, n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 2, 0, 4, 12, 0, 144, 168, 200, 0, 25696, 18768, 12384, 8688, 0, 18082560, 8697280, 3923040, 1914560, 936992, 0, 47025585664, 14670384000, 4512045120, 1622358720, 647087040, 242016192, 0, 450955726792704, 87781550054912, 17679638000640, 4496696041600, 1408276410240, 482302375296, 145763745920
Offset: 0

Views

Author

Geoffrey Critzer, Mar 06 2023

Keywords

Examples

			  1;
  0,     2;
  0,     4,    12;
  0,   144,   168,   200;
  0, 25696, 18768, 12384, 8688;
  ...
		

Crossrefs

Cf. A003030, A003024, A002416 (row sums).

Programs

  • Mathematica
    nn =15; strong = Select[Import["https://oeis.org/A003030/b003030.txt", "Table"],
       Length@# == 2 &][[All, 2]]; s[x_] := Total[strong Table[x^i/i!, {i, 1, 58}]]; begf = Total[CoefficientList[ Series[1/(Total[CoefficientList[Series[ Exp[-u *s[x]], {x, 0, nn}], x]* Table[z^n/(2^Binomial[n, 2]), {n, 0, nn}]]), {z, 0, nn}],z]*Table[z^n 2^Binomial[n, 2], {n, 0, nn}]] /. z -> 2 z;
    Range[0, nn]! CoefficientList[begf, {z, u}] // Grid (* Geoffrey Critzer, Mar 14 2023 after Andrew Howroyd *)
  • PARI
    Z(p, f)={my(n=serprec(p, x)); serconvol(p, sum(k=0, n-1, x^k*f(k), O(x^n)))}
    G(e, p)={Z(p, k->1/e^(k*(k-1)/2))}
    U(e, p)={Z(p, k->e^(k*(k-1)/2))}
    RelEgf(n, e)={sum(k=0, n, e^(k^2)*x^k/k!, O(x*x^n) )}
    T(n)={my(e=2); [Vecrev(p) | p<-Vec(serlaplace(U(e, 1/G(e, exp(y*log(U(e, 1/G(e, RelEgf(n, e)))))))))]}
    { my(A=T(6)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Mar 06 2023

Formula

E.g.f. for column 1: A(2*x) where A(x) is the e.g.f. for A003030.
E.g.f. for main diagonal: B(2*x) where B(x) is the e.g.f. for A003024.

Extensions

Terms a(15) and beyond from Andrew Howroyd, Mar 06 2023

A361455 Triangle read by rows: T(n,k) is the number of simple digraphs on labeled n nodes with k strongly connected components.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 18, 21, 25, 0, 1606, 1173, 774, 543, 0, 565080, 271790, 122595, 59830, 29281, 0, 734774776, 229224750, 70500705, 25349355, 10110735, 3781503, 0, 3523091615568, 685793359804, 138122171880, 35130437825, 11002159455, 3767987307, 1138779265
Offset: 0

Views

Author

Andrew Howroyd, Mar 16 2023

Keywords

Examples

			Triangle begins:
  1;
  0,         1;
  0,         1,         3;
  0,        18,        21,       25;
  0,      1606,      1173,      774,      543;
  0,    565080,    271790,   122595,    59830,    29281;
  0, 734774776, 229224750, 70500705, 25349355, 10110735, 3781503;
  ...
		

Crossrefs

Column k=1 is A003030.
Main diagonal is A003024.
Row sums are A053763.
The unlabeled version is A361582.
Cf. A189898 (weak components), A361269 (loops allowed), A361591.

Programs

  • PARI
    Z(p, f)={my(n=serprec(p, x)); serconvol(p, sum(k=0, n-1, x^k*f(k), O(x^n)))}
    G(e, p)={Z(p, k->1/e^(k*(k-1)/2))}
    U(e, p)={Z(p, k->e^(k*(k-1)/2))}
    DigraphEgf(n, e)={sum(k=0, n, e^(k*(k-1))*x^k/k!, O(x*x^n) )}
    T(n)={my(e=2); [Vecrev(p) | p<-Vec(serlaplace(U(e, 1/G(e, exp(y*log(U(e, 1/G(e, DigraphEgf(n, e)))))))))]}
    { my(A=T(6)); for(i=1, #A, print(A[i])) }

Formula

T(n,k) = A361269(n,k)/2^n.

A361579 Triangular array read by rows. T(n,k) is the number of labeled digraphs on [n] with exactly k source-like components, n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 51, 12, 1, 0, 3614, 447, 34, 1, 0, 991930, 53675, 2885, 85, 1, 0, 1051469032, 21514470, 741455, 16665, 201, 1, 0, 4366988803688, 30405612790, 642187105, 9816380, 90678, 462, 1, 0, 71895397383029040, 160152273169644, 2024633081100, 19625842425, 122330544, 474138, 1044, 1
Offset: 0

Views

Author

Geoffrey Critzer, Mar 16 2023

Keywords

Comments

Here, a source-like component of a digraph D is a strongly connected component of D that corresponds to a node of in-degree 0 in the condensation of D.

Examples

			Triangle begins:
  1;
  0,      1;
  0,      3,     1;
  0,     51,    12,    1;
  0,   3614,   447,   34,  1;
  0, 991930, 53675, 2885, 85, 1;
  ...
		

Crossrefs

Cf. A003028 (column k=1), A053763 (row sums).

Programs

  • Mathematica
    nn = 6; B[n_] := n! 2^Binomial[n, 2]; strong =Select[Import["https://oeis.org/A003030/b003030.txt", "Table"], Length@# == 2 &][[All, 2]]; s[x_] := Total[strong Table[x^i/i!, {i, 1, 58}]];
    ggfz[egfx_] := Normal[Series[egfx, {x, 0, nn}]] /.Table[x^i -> z^i/2^Binomial[i, 2], {i, 0, nn}];Table[B[n], {n, 0, nn}] CoefficientList[Series[ggfz[Exp[(u - 1) s[x]]]/ggfz[Exp[- s[x]]], {z, 0, nn}], {z u}] // Grid

A361592 Triangular array read by rows. T(n,k) is the number of labeled digraphs on [n] with exactly k strongly connected components of size 1, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 1, 0, 3, 18, 21, 0, 25, 1699, 1080, 774, 0, 543, 587940, 267665, 103860, 59830, 0, 29281, 750744901, 225144360, 64169325, 19791000, 10110735, 0, 3781503, 3556390155318, 672637205149, 126726655860, 29445913175, 7939815030, 3767987307, 0, 1138779265
Offset: 0

Views

Author

Geoffrey Critzer, Mar 16 2023

Keywords

Examples

			Triangle begins:
       1;
       0,      1;
       1,      0,      3;
      18,     21,      0,    25;
    1699,   1080,    774,     0, 543;
  587940, 267665, 103860, 59830,   0, 29281;
  ...
		

Crossrefs

Cf. A086366 (column k=0), A003024 (main diagonal), A053763 (row sums), A361590 (unlabeled version).

Programs

  • Mathematica
    nn = 7; B[n_] := n! 2^Binomial[n, 2]; strong = Select[Import["https://oeis.org/A003030/b003030.txt", "Table"], Length@# == 2 &][[All, 2]];s[x_] := Total[strong Table[x^i/i!, {i, 1, 58}]]; ggfz[egfx_] := Normal[Series[egfx, {x, 0, nn}]] /.Table[x^i -> z^i/2^Binomial[i, 2], {i, 0, nn}];Table[Take[(Table[B[n], {n, 0, nn}] CoefficientList[Series[1/ggfz[Exp[-(s[x] - x + u x)]], {z, 0, nn}], {z,u}])[[i]], i], {i, 1, nn + 1}] // Grid

A366866 Number of binary relations R on [n] such that the transitive closure of R contains the identity relation.

Original entry on oeis.org

1, 1, 7, 253, 39463, 24196201, 56481554827, 502872837857293, 17309567681965278223, 2333553047265268677638161, 1243013506394568266481053180947, 2629978323181659930952963974617537173, 22170279317365870690118601982232935268994583
Offset: 0

Views

Author

Geoffrey Critzer, Oct 25 2023

Keywords

Comments

Equivalently, a(n) is the number of n X n Boolean relation matrices whose Frobenius normal form contains no 0-blocks on the diagonal. See Gregory, Kirkland, and Pullman.
Equivalently, a(n) is the number of labeled directed graphs on [n] (with self loops allowed) such that every strongly connected component contains at least one arc.
This sequence is a good upper-bound for the number of relations that converge to a quasi-order (A366252) which is only known for n <= 6.
If the transitive closure of a relation R contains the identity relation then there is exactly one transitive relation in {R,R^2,R^3...}. See Schwarz link.

Crossrefs

Programs

  • Mathematica
    nn = 12; B[n_] := 2^Binomial[n, 2] n!; strong = Select[Import["https://oeis.org/A003030/b003030.txt", "Table"],Length@# == 2 &][[All, 2]]; s[x_] := Total[strong Table[x^i/i!, {i,1,58}]];ggf[egf_]:=Normal[Series[egf, {x, 0, nn}]] /.Table[x^i ->x^i/2^Binomial[i, 2], {i, 0, nn}];Table[B[n], {n, 0, nn}] CoefficientList[
      Series[1/ggf[Exp[- (s[2 x] - x)]], {x, 0, nn}], x]

Formula

Sum_{n>=0} a_n*x^n/(2^n*binomial(n,2)) = 1/(E(x) @ exp(-(s(2x)-x))) where E(x) = Sum_{n>=0} x^n/(2^n*binomial(n,2)), s(x) is the e.g.f. for A003030, and @ is the exponential Hadamard product (see Panafieu and Dovgal).
Previous Showing 11-20 of 33 results. Next