A350790
Number of digraphs on n labeled nodes with a global source and sink.
Original entry on oeis.org
1, 2, 12, 432, 64240, 33904800, 61721081184, 394586260943616, 9146766152111641344, 792073976107698469670400, 261895415169919230764987845120, 335402460348866803020064114666616832, 1678893205649791601327398844631544110815232
Offset: 1
-
nn = 15; strong = Select[Import["https://oeis.org/A003030/b003030.txt", "Table"],
Length@# == 2 &][[All, 2]]; s[z_] := Total[strong Table[z^i/i!, {i, 1, 58}]];
ggf[egf_] := Normal[Series[egf, {z, 0, nn}]] /. Table[z^i -> z^i/2^Binomial[i, 2], {i, 1, nn + 1}];egf[ggf_] := Normal[Series[ggf, {z, 0, nn}]] /.Table[z^i -> z^i*2^Binomial[i, 2], {i, 1, nn + 1}];Table[n!, {n, 0, nn}] CoefficientList[
Series[z - z^2 + Exp[(u - 1) (v - 1) s[ z]] egf[ggf[z Exp[(u - 1) s[z]]]*1/ggf[Exp[-s[z]]]*ggf[z Exp[(v - 1) s[ z]]]] /. {u -> 0, v -> 0}, {z, 0, nn}], z] (* Geoffrey Critzer, Apr 17 2023 *)
-
InitFinallyV(12) \\ See A350791 for program code.
A339807
Irregular triangle read by rows: T(n,k) (n>=2, k>=1) is the number of strong digraphs on n nodes with k descents.
Original entry on oeis.org
1, 2, 11, 5, 10, 154, 540, 581, 272, 49, 122, 3418, 27304, 90277, 150948, 150519, 95088, 37797, 8714, 893, 3346, 142760, 1938178, 12186976, 42696630, 94605036, 145009210, 161845163, 134933733, 84656743, 39632149, 13481441, 3156845, 455917, 30649
Offset: 2
Triangle begins:
1;
2, 11, 5;
10, 154, 540, 581, 272, 49;
122, 3418, 27304, 90277, 150948, 150519, 95088, 37797, 8714, 893;
3346, 142760, 1938178, 12186976, 42696630, 94605036, 145009210, 161845163, 134933733, 84656743, 39632149, 13481441, 3156845, 455917, 30649;
...
-
nn = 8; B[n_] := FunctionExpand[QFactorial[n, (1 + u y)/(1 + y)]] (1 + y)^Binomial[n, 2]; g[z_] := Sum[(1 + u y)^Binomial[n, 2] z^n/FunctionExpand[QFactorial[n, (1 + u y)/(1 + y)]], {n, 0, nn}]; egf[eggf_] := Normal[Series[eggf, {z, 0, nn}]] /.Table[z^i -> z^i*B[i]/i!, {i, 1, nn + 1}]; Map[Drop[#, 1] &, Drop[Map[CoefficientList[#, u] &, Table[n!, {n, 0, nn}]CoefficientList[Series[-Log[egf[1/g[z]]], {z, 0, nn}], z] /. y -> 1], 2]] // Grid (* Geoffrey Critzer, Feb 12 2025 *)
A350730
Number of strongly connected oriented graphs on n labeled nodes.
Original entry on oeis.org
1, 0, 2, 66, 7998, 2895570, 3015624078, 8890966977354, 74079608267459142, 1754419666770364130730, 119163820122708911990211222, 23431180614718394105521543222866, 13448652672256961901980839022683943838, 22684139279519345808802725789494254587951810
Offset: 1
A086366
Number of labeled n-node digraphs in which every node belongs to a directed cycle.
Original entry on oeis.org
1, 0, 1, 18, 1699, 587940, 750744901, 3556390155318, 63740128872703879, 4405426607409460017480, 1190852520892329350092354441, 1270598627613805616203391468226138, 5381238039128882594932248239301142751179, 90766634183072089515270648224715368261615375340
Offset: 0
-
G(p)={my(n=serprec(p,x)); serconvol(p, sum(k=0, n-1, x^k/2^(k*(k-1)/2), O(x^n)))}
U(p)={my(n=serprec(p,x)); serconvol(p, sum(k=0, n-1, x^k*2^(k*(k-1)/2), O(x^n)))}
DigraphEgf(n)={sum(k=0, n, 2^(k*(k-1))*x^k/k!, O(x*x^n) )}
seq(n)={Vec(serlaplace(U(1/G(exp(x+log(U(1/G(DigraphEgf(n)))))))))} \\ Andrew Howroyd, Jan 15 2022
a(0)=1 prepended and terms a(12) and beyond from
Andrew Howroyd, Jan 15 2022
A355612
Number of labeled digraphs on [n] such that for any pair C_1,C_2 of distinct strongly connected components, if x in C_1 is directed to y in C_2 then every vertex in C_1 is directed to every vertex in C_2.
Original entry on oeis.org
1, 1, 4, 52, 2524, 629296, 750098464, 3540134362192, 63605185617860464, 4402130837352016607296, 1190565802204629673473661504, 1270503156085666608161173288964992, 5381113705726490960372769906727545572224, 90765998703828737395601069325546106634460887296, 6109068274998388232409260496587163340177606642565219584
Offset: 0
-
nn = 14; d[x_] := Total[Cases[Import["https://oeis.org/A003024/b003024.txt",
"Table"], {, }][[All, 2]]*Table[x^(i - 1)/(i - 1)!, {i, 1, 41}]];
s[x_] := Total[ Prepend[Cases[Import["https://oeis.org/A003030/b003030.txt",
"Table"], {, }][[All, 2]], 1]* Table[x^(i - 1)/(i - 1)!, {i, 1, 59}]];
Range[0, nn]! CoefficientList[Series[d[s[x] - 1], {x, 0, nn}], x]
A361269
Triangular array read by rows. T(n,k) is the number of binary relations on [n] containing exactly k strongly connected components, n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 0, 2, 0, 4, 12, 0, 144, 168, 200, 0, 25696, 18768, 12384, 8688, 0, 18082560, 8697280, 3923040, 1914560, 936992, 0, 47025585664, 14670384000, 4512045120, 1622358720, 647087040, 242016192, 0, 450955726792704, 87781550054912, 17679638000640, 4496696041600, 1408276410240, 482302375296, 145763745920
Offset: 0
1;
0, 2;
0, 4, 12;
0, 144, 168, 200;
0, 25696, 18768, 12384, 8688;
...
- E. de Panafieu and S. Dovgal, Symbolic method and directed graph enumeration, arXiv:1903.09454 [math.CO], 2019.
- R. W. Robinson, Counting digraphs with restrictions on the strong components, Combinatorics and Graph Theory '95 (T.-H. Ku, ed.), World Scientific, Singapore (1995), 343-354.
- Wikipedia, Strongly connected component
-
nn =15; strong = Select[Import["https://oeis.org/A003030/b003030.txt", "Table"],
Length@# == 2 &][[All, 2]]; s[x_] := Total[strong Table[x^i/i!, {i, 1, 58}]]; begf = Total[CoefficientList[ Series[1/(Total[CoefficientList[Series[ Exp[-u *s[x]], {x, 0, nn}], x]* Table[z^n/(2^Binomial[n, 2]), {n, 0, nn}]]), {z, 0, nn}],z]*Table[z^n 2^Binomial[n, 2], {n, 0, nn}]] /. z -> 2 z;
Range[0, nn]! CoefficientList[begf, {z, u}] // Grid (* Geoffrey Critzer, Mar 14 2023 after Andrew Howroyd *)
-
Z(p, f)={my(n=serprec(p, x)); serconvol(p, sum(k=0, n-1, x^k*f(k), O(x^n)))}
G(e, p)={Z(p, k->1/e^(k*(k-1)/2))}
U(e, p)={Z(p, k->e^(k*(k-1)/2))}
RelEgf(n, e)={sum(k=0, n, e^(k^2)*x^k/k!, O(x*x^n) )}
T(n)={my(e=2); [Vecrev(p) | p<-Vec(serlaplace(U(e, 1/G(e, exp(y*log(U(e, 1/G(e, RelEgf(n, e)))))))))]}
{ my(A=T(6)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Mar 06 2023
A361455
Triangle read by rows: T(n,k) is the number of simple digraphs on labeled n nodes with k strongly connected components.
Original entry on oeis.org
1, 0, 1, 0, 1, 3, 0, 18, 21, 25, 0, 1606, 1173, 774, 543, 0, 565080, 271790, 122595, 59830, 29281, 0, 734774776, 229224750, 70500705, 25349355, 10110735, 3781503, 0, 3523091615568, 685793359804, 138122171880, 35130437825, 11002159455, 3767987307, 1138779265
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 3;
0, 18, 21, 25;
0, 1606, 1173, 774, 543;
0, 565080, 271790, 122595, 59830, 29281;
0, 734774776, 229224750, 70500705, 25349355, 10110735, 3781503;
...
-
Z(p, f)={my(n=serprec(p, x)); serconvol(p, sum(k=0, n-1, x^k*f(k), O(x^n)))}
G(e, p)={Z(p, k->1/e^(k*(k-1)/2))}
U(e, p)={Z(p, k->e^(k*(k-1)/2))}
DigraphEgf(n, e)={sum(k=0, n, e^(k*(k-1))*x^k/k!, O(x*x^n) )}
T(n)={my(e=2); [Vecrev(p) | p<-Vec(serlaplace(U(e, 1/G(e, exp(y*log(U(e, 1/G(e, DigraphEgf(n, e)))))))))]}
{ my(A=T(6)); for(i=1, #A, print(A[i])) }
A361579
Triangular array read by rows. T(n,k) is the number of labeled digraphs on [n] with exactly k source-like components, n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 3, 1, 0, 51, 12, 1, 0, 3614, 447, 34, 1, 0, 991930, 53675, 2885, 85, 1, 0, 1051469032, 21514470, 741455, 16665, 201, 1, 0, 4366988803688, 30405612790, 642187105, 9816380, 90678, 462, 1, 0, 71895397383029040, 160152273169644, 2024633081100, 19625842425, 122330544, 474138, 1044, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, 3, 1;
0, 51, 12, 1;
0, 3614, 447, 34, 1;
0, 991930, 53675, 2885, 85, 1;
...
- E. de Panafieu and S. Dovgal, Symbolic method and directed graph enumeration, arXiv:1903.09454 [math.CO], 2019.
- R. W. Robinson, Counting digraphs with restrictions on the strong components, Combinatorics and Graph Theory '95 (T.-H. Ku, ed.), World Scientific, Singapore (1995), 343-354.
- Wikipedia, Strongly connected component
-
nn = 6; B[n_] := n! 2^Binomial[n, 2]; strong =Select[Import["https://oeis.org/A003030/b003030.txt", "Table"], Length@# == 2 &][[All, 2]]; s[x_] := Total[strong Table[x^i/i!, {i, 1, 58}]];
ggfz[egfx_] := Normal[Series[egfx, {x, 0, nn}]] /.Table[x^i -> z^i/2^Binomial[i, 2], {i, 0, nn}];Table[B[n], {n, 0, nn}] CoefficientList[Series[ggfz[Exp[(u - 1) s[x]]]/ggfz[Exp[- s[x]]], {z, 0, nn}], {z u}] // Grid
A361592
Triangular array read by rows. T(n,k) is the number of labeled digraphs on [n] with exactly k strongly connected components of size 1, n>=0, 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 1, 0, 3, 18, 21, 0, 25, 1699, 1080, 774, 0, 543, 587940, 267665, 103860, 59830, 0, 29281, 750744901, 225144360, 64169325, 19791000, 10110735, 0, 3781503, 3556390155318, 672637205149, 126726655860, 29445913175, 7939815030, 3767987307, 0, 1138779265
Offset: 0
Triangle begins:
1;
0, 1;
1, 0, 3;
18, 21, 0, 25;
1699, 1080, 774, 0, 543;
587940, 267665, 103860, 59830, 0, 29281;
...
- E. de Panafieu and S. Dovgal, Symbolic method and directed graph enumeration, arXiv:1903.09454 [math.CO], 2019.
- R. W. Robinson, Counting digraphs with restrictions on the strong components, Combinatorics and Graph Theory '95 (T.-H. Ku, ed.), World Scientific, Singapore (1995), 343-354.
- Wikipedia, Strongly connected component
-
nn = 7; B[n_] := n! 2^Binomial[n, 2]; strong = Select[Import["https://oeis.org/A003030/b003030.txt", "Table"], Length@# == 2 &][[All, 2]];s[x_] := Total[strong Table[x^i/i!, {i, 1, 58}]]; ggfz[egfx_] := Normal[Series[egfx, {x, 0, nn}]] /.Table[x^i -> z^i/2^Binomial[i, 2], {i, 0, nn}];Table[Take[(Table[B[n], {n, 0, nn}] CoefficientList[Series[1/ggfz[Exp[-(s[x] - x + u x)]], {z, 0, nn}], {z,u}])[[i]], i], {i, 1, nn + 1}] // Grid
A366866
Number of binary relations R on [n] such that the transitive closure of R contains the identity relation.
Original entry on oeis.org
1, 1, 7, 253, 39463, 24196201, 56481554827, 502872837857293, 17309567681965278223, 2333553047265268677638161, 1243013506394568266481053180947, 2629978323181659930952963974617537173, 22170279317365870690118601982232935268994583
Offset: 0
- D. A. Gregory, S. Kirkland, and N. J. Pullman, Power convergent Boolean matrices, Linear Algebra and its Applications, Volume 179, 15 January 1993, Pages 105-117.
- E. de Panafieu and S. Dovgal, Symbolic method and directed graph enumeration, arXiv:1903.09454 [math.CO], 2019.
- S. Schwarz, On the semigroup of binary relations on a finite set , Czechoslovak Mathematical Journal, 1970.
-
nn = 12; B[n_] := 2^Binomial[n, 2] n!; strong = Select[Import["https://oeis.org/A003030/b003030.txt", "Table"],Length@# == 2 &][[All, 2]]; s[x_] := Total[strong Table[x^i/i!, {i,1,58}]];ggf[egf_]:=Normal[Series[egf, {x, 0, nn}]] /.Table[x^i ->x^i/2^Binomial[i, 2], {i, 0, nn}];Table[B[n], {n, 0, nn}] CoefficientList[
Series[1/ggf[Exp[- (s[2 x] - x)]], {x, 0, nn}], x]
Comments