cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 65 results. Next

A178819 Pascal's prism (3-dimensional array) read by folded antidiagonal cross-sections: (h+i; h, i-j, j), h >= 0, i >= 0, 0 <= j <= i.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 3, 3, 1, 3, 6, 3, 3, 3, 1, 1, 4, 4, 6, 12, 6, 4, 12, 12, 4, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 5, 20, 30, 20, 5, 10, 30, 30, 10, 10, 20, 10, 5, 5, 1, 1, 6, 6, 15, 30, 15, 20, 60, 60, 20, 15, 60, 90, 60, 15, 6, 30, 60, 60, 30, 6, 1, 6, 15, 20, 15, 6, 1
Offset: 0

Views

Author

Harlan J. Brothers, Jun 16 2010

Keywords

Comments

P_h = level h of Pascal's prism where P_1 = Pascal's triangle (A007318) and P_2 = denominators of Leibniz harmonic triangle (A003506). A sequence of length k through P is defined by P for n = {1, 2, 3, ..., k}.

Examples

			Prism begins (levels 1-4):
1
1 1
1 2 1
1 3 3 1
1
2 2
3 6 3
4 12 12 4
1
3 3
6 12 6
10 30 30 10
1
4 4
10 20 10
20 60 60 20
		

Crossrefs

Level 1 = A007318.
Level 2 = A003506.
Level 3 = A094305.
Level 4 = A178820.
Level 5 = A178821.
Level 6 = A178822.
Sums of shallow diagonals for each level correspond to rows of square A037027.
Contains A109649 and A046816.
P = A000984.
P = A006480.
P = A000897.
P<3n-2, 3n-2, n> = A113424.

Programs

  • Mathematica
    end = 5; Column/@Table[Multinomial[h, i-j, j], {h, 0, end}, {i, 0, end}, {j, 0, i}]

Formula

a_(h, i, j) = (h+i-2; h-1, i-j, j-1), h >= 1, i >= 1, 1 <= j <= i.
Recurrence:
For P_h, element a is given by: a_(1, 1) = 1; a_(i, j) = ((i+h-2)/(i-1)) (a_(i-1, j) + a_(i-1, j-1)).

Extensions

Keyword tabf by Michel Marcus, Oct 22 2017

A241519 Denominators of b(n) = b(n-1)/2 + 1/(2*n), b(0)=0.

Original entry on oeis.org

1, 2, 2, 12, 3, 15, 60, 840, 105, 630, 630, 13860, 6930, 180180, 360360, 144144, 9009, 306306, 306306, 11639628, 14549535, 14549535, 58198140, 2677114440, 334639305, 3346393050
Offset: 0

Views

Author

Paul Curtz, Apr 24 2014

Keywords

Comments

Generally, 2*b(n) = b(n-1) + f(n). See, for f(n)=n, A000337(n)/2^n.
a(0)=1. b(n) is mentioned in A241269.
Difference table of b(n):
0, 1/2, 1/2, 5/12, 1/3, 4/15, ...
1/2, 0, -1/12, -1/12, -1/15, -1/20, ...
-1/2, -1/12, 0, 1/60, 1/60, 11/840, ...
5/12, 1/12, 1/60, 0, -1/280, -1/280, ...
etc.
b(n) is mentioned in A241269 as an autosequence of the first kind.
The denominators of the first two upper diagonals are the positive Apéry numbers, A005430(n+1). Compare to the array in A003506.
Numerators: 0, 1, 1, 5, 1, 4, 13, 151, 16, 83, 73, 1433, 647, 15341, ... .

Examples

			0, 1/2, 1/2, 5/12, 1/3, 4/15, 13/60, 151/840, 16/105, 83/630, 73/630, ...
b(1) = (0+1)/2, hence a(1)=2.
b(2) = (1/2+1/2)/2 = 1/2, hence a(2)=2.
b(3) = (1/2+1/3)/2 = 5/12, hence a(3)=12.
		

Crossrefs

Cf. A086466.
Cf. A242376 (numerators).

Programs

  • Mathematica
    b[0] = 0; b[n_] := b[n] = 1/2*(b[n-1] + 1/n); Table[b[n] // Denominator, {n, 0, 25}] (* Jean-François Alcover, Apr 25 2014 *)
    Table[-Re[LerchPhi[2, 1, n + 1]], {n, 0, 20}] // Denominator (* Eric W. Weisstein, Dec 11 2017 *)
    -Re[LerchPhi[2, 1, Range[20]]] // Denominator (* Eric W. Weisstein, Dec 11 2017 *)
    RecurrenceTable[{b[n] == b[n - 1]/2 + 1/(2 n), b[0] == 0}, b[n], {n, 20}] // Denominator (* Eric W. Weisstein, Dec 11 2017 *)

Formula

b(n) = -Re(Phi(2, 1, n + 1)) where Phi denotes the Lerch transcendent. - Eric W. Weisstein, Dec 11 2017

Extensions

Extension, after a(13), from Jean-François Alcover, Apr 24 2014

A356546 Triangle read by rows. T(n, k) = RisingFactorial(n + 1, n) / (k! * (n - k)!).

Original entry on oeis.org

1, 2, 2, 6, 12, 6, 20, 60, 60, 20, 70, 280, 420, 280, 70, 252, 1260, 2520, 2520, 1260, 252, 924, 5544, 13860, 18480, 13860, 5544, 924, 3432, 24024, 72072, 120120, 120120, 72072, 24024, 3432, 12870, 102960, 360360, 720720, 900900, 720720, 360360, 102960, 12870
Offset: 0

Views

Author

Peter Luschny, Aug 12 2022

Keywords

Comments

The counterpart using the falling factorial is Leibniz's Harmonic Triangle A003506.

Examples

			Triangle T(n, k) begins:
[0]     1;
[1]     2,      2;
[2]     6,     12,      6;
[3]    20,     60,     60,     20;
[4]    70,    280,    420,    280,     70;
[5]   252,   1260,   2520,   2520,   1260,    252;
[6]   924,   5544,  13860,  18480,  13860,   5544,    924;
[7]  3432,  24024,  72072, 120120, 120120,  72072,  24024,   3432;
[8] 12870, 102960, 360360, 720720, 900900, 720720, 360360, 102960, 12870;
		

Crossrefs

cf. A000984, A059304 (row sums, see also A343842), A265609 (rising factorial).
Cf. A003506, A173018 (Eulerian numbers), A000108, A000897 (central terms).

Programs

  • Maple
    A356546 := (n, k) -> pochhammer(n+1, n)/(k!*(n-k)!):
    for n from 0 to 8 do seq(A356546(n, k), k=0..n) od;
  • Mathematica
    T[ n_, k_] := Binomial[2*n, n] * Binomial[n, k]; (* Michael Somos, Aug 18 2022 *)
  • PARI
    {T(n, k) = binomial(2*n, n) * binomial(n, k)}; /* Michael Somos, Aug 18 2022 */
  • SageMath
    def A356546(n, k):
        return rising_factorial(n+1,n) // (factorial(k) * factorial(n-k))
    for n in range(9): print([A356546(n, k) for k in range(n+1)])
    

Formula

Bernoulli(n) / Catalan(n) = Sum_{k=0..n} (-1)^k*A173018(n, k) / T(n, k), (with Bernoulli(1) = 1/2).
G.f.: 1/sqrt(1 - 4*x*(y + 1)). - Vladimir Kruchinin, Feb 15 2023

A046202 Distinct numbers in the triangle of denominators in Leibniz's Harmonic Triangle.

Original entry on oeis.org

1, 2, 3, 6, 4, 12, 5, 20, 30, 60, 7, 42, 105, 140, 8, 56, 168, 280, 9, 72, 252, 504, 630, 10, 90, 360, 840, 1260, 11, 110, 495, 1320, 2310, 2772, 132, 660, 1980, 3960, 5544, 13, 156, 858, 2860, 6435, 10296, 12012, 14, 182, 1092, 4004, 10010, 18018, 24024, 15
Offset: 1

Views

Author

Keywords

Comments

Numbers in the order in which they appear in Leibniz's Harmonic Triangle (A003506). This sequence is a permutation of the natural numbers. - Robert G. Wilson v, Jun 12 2014

Examples

			1/1; 1/2, 1/2; 1/3, 1/6, 1/3; 1/4, 1/12, 1/12, 1/4; 1/5, 1/20, 1/30, 1/20, 1/5; ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 83, Problem 25.

Crossrefs

Programs

  • Mathematica
    t[n_, k_] := Denominator[n!*k!/(n + k + 1)!]; DeleteDuplicates@ Flatten@ Table[t[n - k, k], {n, 0, 14}, {k, 0, n/2}] (* Robert G. Wilson v, Jun 12 2014 *)

Extensions

More terms from James Sellers, Dec 13 1999

A121547 Fourth slice along the 1-2-plane in the cube a(m,n,o) = a(m-1,n,o) + a(m,n-1,o) + a(m,n,o-1) for which the first slice is Pascal's triangle (slice read by antidiagonals).

Original entry on oeis.org

0, 0, 1, 0, 4, 4, 0, 10, 20, 10, 0, 20, 60, 60, 20, 0, 35, 140, 210, 140, 35, 0, 56, 280, 560, 560, 280, 56, 0, 84, 504, 1260, 1680, 1260, 504, 84, 0, 120, 840, 2520, 4200, 4200, 2520, 840, 120, 0, 165, 1320, 4620, 9240, 11550, 9240, 4620, 1320, 165, 0, 220, 1980, 7920, 18480, 27720, 27720, 18480, 7920, 1980, 220
Offset: 0

Views

Author

Thomas Wieder, Aug 06 2006

Keywords

Comments

Essentially the same as triangle A178820 with an additional column of zeros at the left border. - Georg Fischer, Jul 31 2023

Examples

			The second row is 1, 4, 10, 20, 35, 56, 84, 120, 165, 220 = A000292, i.e., Tetrahedral (or pyramidal) numbers: binomial(n+2,3) = n(n+1)(n+2)/6 (core).
The third row is 4, 20, 60, 140, 280, 504, 840, 1320, 1980, 2860 = A033488 = n*(n+1)*(n+2)*(n+3)/6.
The main diagonal is 0, 4, 60, 560, 4200, 27720, 168168, 960960, 5250960, 27713400 = {0} U A002803*4.
Triangle starts:
  0
  0, 1
  0, 4, 4
  0, 10, 20, 10
  0, 20, 60, 60, 20
  0, 35, 140, 210, 140, 35
  0, 56, 280, 560, 560, 280, 56
  0, 84, 504, 1260, 1680, 1260, 504, 84
		

Crossrefs

Programs

  • Maple
    T:=(n, k)->binomial(n+3, 3)*binomial(n, k): seq(print(seq(T(n-1, k-1), k=0..n)), n=0..10); # Georg Fischer, Jul 31 2023

Formula

a(m-1,n,o) + a(m,n-1,o) + a(m,n,o-1) with initialization values a(1,0,0) = 1 and a(m<>1=0, n>=0, 0>=o) = 0.

Extensions

a(55)-a(56) corrected and more terms from Georg Fischer, Jul 31 2023

A132751 Triangle T(n, k) = 2/Beta(n-k+1, k) - 1, read by rows.

Original entry on oeis.org

1, 3, 3, 5, 11, 5, 7, 23, 23, 7, 9, 39, 59, 39, 9, 11, 59, 119, 119, 59, 11, 13, 83, 209, 279, 209, 83, 13, 15, 111, 335, 559, 559, 335, 111, 15, 17, 143, 503, 1007, 1259, 1007, 503, 143, 17, 19, 179, 719, 1679, 2519, 2519, 1679, 719, 179, 19
Offset: 1

Views

Author

Gary W. Adamson, Aug 28 2007

Keywords

Examples

			First few rows of the triangle are:
   1;
   3,   3;
   5,  11,   5;
   7,  23,  23,   7;
   9,  39,  59,  39,   9;
  11,  59, 119, 119,  59,  11;
  13,  83, 209, 279, 209,  83,  13;
  15, 111, 335, 559, 559, 335, 111, 15;
  ...
		

Crossrefs

Programs

  • Magma
    A132751:= func< n,k | 2*Factorial(n)/(Factorial(k-1)*Factorial(n-k)) -1 >;
    [A132751(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Feb 16 2021
  • Mathematica
    T[n_, k_]:= 2/Beta[n-k+1, k] - 1;
    Table[T[n, k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Feb 16 2021 *)
  • Sage
    def A132751(n, k): return 2/beta(n-k+1, k) - 1
    flatten([[A132751(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 16 2021
    

Formula

T(n, k) = 2*A003506(n, k) - 1, an infinite lower triangular matrix.
From G. C. Greubel, Feb 16 2021: (Start)
T(n, k) = 2/Beta(n-k+1, k) - 1.
Sum_{k=1..n} T(n, k) = n*(2^n -1) = A066524(n). (End)

A132776 A128064 (unsigned) * A007318.

Original entry on oeis.org

1, 3, 2, 5, 8, 3, 7, 18, 15, 4, 9, 32, 42, 24, 5, 11, 50, 90, 80, 35, 6, 13, 72, 165, 200, 135, 48, 7, 15, 98, 273, 420, 385, 210, 63, 8, 17, 128, 420, 784, 910, 672, 308, 80, 9, 19, 162, 612, 1344, 1890, 1764, 1092, 432, 99, 10
Offset: 0

Views

Author

Gary W. Adamson, Aug 29 2007

Keywords

Comments

Row sums = A053220: (1, 5, 16, 44, 112, 272, ...).
A003506 = A007318 * A128064 (unsigned).

Examples

			First few rows of the triangle:
   1;
   3,  2;
   5,  8,  3;
   7, 18, 15,  4;
   9, 32, 42, 24,  5;
  11, 50, 90, 80, 35,  6;
  ...
		

Crossrefs

Formula

A128064 (unsigned) * A007318 as infinite lower triangular matrices.

A187791 Repeat n+1 times 2^A005187(n).

Original entry on oeis.org

1, 2, 2, 8, 8, 8, 16, 16, 16, 16, 128, 128, 128, 128, 128, 256, 256, 256, 256, 256, 256, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 32768, 32768, 32768, 32768, 32768, 32768, 32768, 32768, 32768, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536
Offset: 0

Views

Author

Paul Curtz, Jan 06 2013

Keywords

Comments

a(n) is the denominators of the antidiagonals of the Lorentz factor, which can be written A001790(n)/A046161(n), and its differences.
1, 1/2, 3/8, 5/16, 35/128, 63/256,... the Lorentz gamma factor,
-1/2, -1/8, -1/16, -5/128, -7/256, -21/1024, ... -A098597(n)/A046161(n+1),from the Lorentz (beta) factor,
3/8, 1/16, 3/128, 3/256, 7/1024, 9/2048,... A161200(n+2)/A046161(n+2),
-5/16, -5/128, -3/256, -5/1024, -5/2048, -45/32768,... A161202(n+3)/A046161(n+4),
35/128, 7/256, 7/1024, 5/2048, 35/32768, 35/65536, ...
-63/256, -21/1024, -9/2048, -45/32768, -35/65536, -63/262144, ... .
Like 1/n and A164555(n)/A027642(n), the Lorentz factor is an autosequence of the second kind. The first column is the signed sequence.
The main diagonal is (-1)^n *A001790(n)/A061549(n).
The Lorentz factor is the differences of (0, followed by A001803(n)) / (1, followed by A046161(n)).
PiSK(n-2)=(0, 0, followed by A001803(n)) / (1, 1, followed by A046161(n)) is also an autosequence of second kind.
Remember that an autosequence of the second kind is a sequence whose inverse binomial transform is the sequence signed, with its main diagonal being the double of its first upper diagonal. - Paul Curtz, Oct 13 2013

Examples

			1,
2,   2,
8,   8,  8,
16, 16, 16, 16.
		

Crossrefs

Cf. A003506.

Programs

  • Mathematica
    Flatten[Table[Denominator[Binomial[2n, n]/4^n], {n, 0, 19}, {n + 1}]] (* Alonso del Arte, Jan 07 2013 *)
    (* Checking with the antidiagonals *) diff = Table[ Differences[ CoefficientList[ Series[1/Sqrt[1 - x], {x, 0, 9}], x], n], {n, 0, 9}]; Table[ diff[[n-k+1,k]] // Denominator,{n,0,10},{k,1,n}] // Flatten (* Jean-François Alcover, Jan 07 2013 *)
    Flatten[Table[2^IntegerExponent[(2*n)!, 2], {n, 0, 19}, {n + 1}]]; (* Jean-François Alcover, Mar 27 2013, after A005187 *)

Formula

Repeat A046161(n) n+1 times. Triangle.

Extensions

New definition by M. F. Hasler

A351583 Triangle read by rows: T(n,k) = A(k,n-k), 1 <= k < n, 2 <= n, where A(m,n) is the number of distinct strings consisting of one X, 2*m-1 Y's and 2*n-1 Z's in which the X lies to the right of at least m Y's and at least n Z's.

Original entry on oeis.org

2, 7, 7, 15, 52, 15, 26, 192, 192, 26, 40, 510, 1086, 510, 40, 57, 1115, 4098, 4098, 1115, 57, 77, 2142, 12075, 20840, 12075, 2142, 77, 100, 3752, 30072, 79600, 79600, 30072, 3752, 100, 126, 6132, 66276, 249408, 382510, 249408, 66276, 6132, 126
Offset: 2

Views

Author

Christopher J. Fewster, Feb 14 2022

Keywords

Comments

The general string enumeration problem of counting strings with k+k'-1 X's, m+m' Y's and n+n' Z's in which the k'th X is placed after at least m of the Y's and n of the Z's may be expressed in terms of an integral of incomplete Beta functions and evaluated in terms of Kampe de Feriet functions (see Connor & Fewster, 2022). Other special cases include A351584 and A351585.

Examples

			Triangle starts:
   2;
   7,   7;
  15,  52,   15;
  26, 192,  192,  26;
  40, 510, 1086, 510, 40;
  ...
		

Crossrefs

Cf. A003506 (1/Beta), A005449 (column k=1), A351584, A351585.

Programs

  • Maple
    T:=(n,k) -> 1/(2*Beta(2*k, 2*n - 2*k)) - binomial(n, k)/(2*Beta(k, n - k)); [seq(seq(T(n,k),k=1..n-1),n=2..10)];
  • Mathematica
    t[n_,k_]:=1/(2*Beta[2*k,2*n-2*k])-Binomial[n,k]/(2*Beta[k,n-k]); Table[t[n,k],{n,2,10},{k,1,n-1}]

Formula

T(n+1,1) = A(1,n) = 1/2*n*(3*n+1) = A005449(n), the n-th second pentagonal number.
T(n,k) = 1/(2*Beta(2*k, 2*n - 2*k)) - binomial(n, k)/(2*Beta(k, n - k)), where Beta(x,y) = Gamma(x)*Gamma(y)/Gamma(x+y) is the Beta-function (see A003506). [Connor and Fewster]

A132778 Triangle read by rows, n-1 terms of (2n - 1) followed by n.

Original entry on oeis.org

1, 3, 2, 5, 5, 3, 7, 7, 7, 4, 9, 9, 9, 9, 5, 11, 11, 11, 11, 11, 6, 13, 13, 13, 13, 13, 13, 7, 15, 15, 15, 15, 15, 15, 15, 8, 17, 17, 17, 17, 17, 17, 17, 17, 9, 19, 19, 19, 19, 19, 19, 19, 19, 19, 10, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 11, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 12
Offset: 1

Views

Author

Gary W. Adamson, Aug 29 2007

Keywords

Comments

Row sums = A001844: (1, 5, 13, 25, 41, 61, ...).

Examples

			First few rows of the triangle:
  1;
  3, 2;
  5, 5, 3;
  7, 7, 7, 4;
  9, 9, 9, 9, 5;
  ...
		

Crossrefs

Formula

A007318^(-1) * [A003506 * A000012], as infinite lower triangular matrices.

Extensions

Spurious extra term after a(44) deleted and more terms from Georg Fischer, Jun 02 2023
Previous Showing 41-50 of 65 results. Next