cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 55 results. Next

A226516 Number of (18,7)-reverse multiples with n digits.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 3, 3, 4, 4, 6, 5, 8, 6, 10, 8, 13, 11, 17, 15, 23, 20, 31, 26, 41, 34, 54, 45, 71, 60, 94, 80, 125, 106, 166, 140, 220, 185, 291, 245, 385, 325, 510, 431, 676, 571, 896, 756, 1187, 1001, 1572, 1326, 2082, 1757, 2758, 2328, 3654, 3084, 4841, 4085, 6413
Offset: 0

Views

Author

N. J. A. Sloane, Jun 16 2013

Keywords

Comments

Comment from Emeric Deutsch, Aug 21 2016 (Start):
Given an increasing sequence of positive integers S = {a0, a1, a2, ... }, let
F(x) = x^{a0} + x^{a1} + x^{a2} + ... .
Then the g. f. for the number of palindromic compositions of n with parts in S is (see Hoggatt and Bicknell, Fibonacci Quarterly, 13(4), 1975):
(1 + F(x))/(1 - F(x^2))
Playing with this, I have found easily that
1. number of palindromic compositions of n into {3,4,5,...} = A226916(n+4);
2. number of palindromic compositions of n into {1,4,7,10,13,...} = A226916(n+6);
3. number of palindromic compositions of n into {1,4} = A226517(n+10);
4. number of palindromic compositions of n into {1,5} = A226516(n+11).
(End)

Crossrefs

Programs

  • Maple
    f:=proc(n) option remember;
    if
    n <= 5 then 0
    elif n=6 then 1
    elif n <= 10 then 0
    elif n <= 12 then 1
    else f(n-2)+f(n-10)
    fi;
    end;
    [seq(f(n),n=0..100)]
  • Mathematica
    CoefficientList[Series[x^6 (1 - x^2 + x^5 + x^6) / (1 - x^2 - x^10), {x, 0, 80}], x] (* Vincenzo Librandi, Jun 18 2013 *)
    LinearRecurrence[{0,1,0,0,0,0,0,0,0,1},{0,0,0,0,0,0,1,0,0,0,0,1,1},80] (* Harvey P. Dale, Jun 17 2015 *)

Formula

G.f.: x^6*(1+x)*(1-x+x^5)/(1-x^2-x^10).
a(n) = a(n-2) + a(n-10) for n>12, with initial values a(0)-a(12) equal to 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1. [Bruno Berselli, Jun 17 2013]
a(2n+1) = A003520(n-5). a(2n) = A098523(n-6). - R. J. Mathar, Dec 13 2022

A243732 Irregular triangular array of denominators of the positive rational numbers ordered as in Comments.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7, 3, 1, 2, 3, 4, 5, 6, 7, 3, 8, 5, 5, 1, 2, 3, 4, 5, 6, 7, 3, 8, 5, 5, 9, 7, 8, 7, 1, 2, 3, 4, 5, 6, 7, 3, 8, 5, 5, 9, 7, 8, 7, 10, 9, 11, 11, 9, 1, 2, 3, 4, 5, 6
Offset: 1

Views

Author

Clark Kimberling, Jun 09 2014

Keywords

Comments

Suppose that m >= 3, and define sets h(n) of positive rational numbers as follows: h(n) = {n} for n = 1..m, and thereafter, h(n) = Union({x+1: x in h(n-1)}, {x/(x+1) : x in h(n-m)}), with the numbers in h(n) arranged in decreasing order. Every positive rational lies in exactly one of the sets h(n). For the present array, put m = 5 and (row n) = h(n); the number of numbers in h(n) is A003520(n-1). (For m = 3, see A243712.)

Examples

			First 11 rows of the array:
  1/1
  2/1
  3/1
  4/1
  5/1
  6/1 ... 1/2
  7/1 ... 3/2 ... 2/3
  8/1 ... 5/2 ... 5/3 ... 3/4
  9/1 ... 7/2 ... 8/3 ... 7/4 ... 4/5
  10/1 .. 9/2 ... 11/3 .. 11/4 .. 9/5 ... 5/6
  11/1 .. 11/2 .. 14/3 .. 15/4 .. 14/5 .. 11/6 .. 6/7 .. 1/3
The denominators, by rows:  1,1,1,1,1,1,2,1,2,3,1,2,3,4,1,2,3,4,5,6,1,2,3,4,5,6,7,3,...
		

Crossrefs

Programs

  • Mathematica
    z = 23; g[1] = {1}; g[2] = {2}; g[3] = {3}; g[4] = {4}; g[5] = {5};
    g[n_] := Reverse[Union[1 + g[n - 1], g[n - 5]/(1 + g[n - 5])]]
    Table[g[n], {n, 1, 9}]
    v = Flatten[Table[g[n], {n, 1, z}]];
    v1 = Denominator[v]; (* A243732 *)
    v2 = Numerator[v];   (* A243733 *)

A247117 Number of tilings of a 10 X n rectangle using 2n pentominoes of shape I.

Original entry on oeis.org

1, 1, 1, 1, 1, 8, 17, 28, 41, 56, 144, 317, 609, 1060, 1716, 3324, 6713, 13188, 24624, 43620, 80464, 153645, 296025, 562097, 1037921, 1920661, 3600832, 6820873, 12920804, 24211457, 45173688, 84493668, 158848825, 299451277, 562923960, 1055117520, 1976475968
Offset: 0

Views

Author

Alois P. Heinz, Nov 19 2014

Keywords

Crossrefs

Cf. A174249, A233427, A003520 (5 X n), A247218 (15 X n).
Column k=5 of A250662.

Programs

  • Maple
    gf:= -(x^10+x^8-x^6-2*x^5-x^4-x^3+1) *(x-1)^4 *(x^4+x^3+x^2+x+1)^4 / (x^35 +x^33 -2*x^31 -7*x^30 -2*x^29 -6*x^28 +x^27 +9*x^26 +22*x^25 +8*x^24 +15*x^23 -4*x^22 -15*x^21 -39*x^20 -12*x^19 -20*x^18 +6*x^17 +10*x^16 +45*x^15 +8*x^14 +19*x^13 -4*x^12 -4*x^11 -33*x^10 -6*x^9 -10*x^8 +x^7 -3*x^6 +12*x^5 +x^3 +x-1):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..50);

Formula

G.f.: see Maple program.

A369838 Number of compositions of 5*n-3 into parts 1 and 5.

Original entry on oeis.org

1, 4, 15, 60, 245, 1001, 4085, 16665, 67985, 277350, 1131476, 4615966, 18831276, 76823991, 313410816, 1278589392, 5216127688, 21279691689, 86812537085, 354160046356, 1444829775128, 5894321227301, 24046447082350, 98099780277675, 400207434286276, 1632684497403029
Offset: 1

Views

Author

Seiichi Manyama, Feb 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6, -10, 10, -5, 1}, {1, 4, 15, 60, 245}, 50] (* Paolo Xausa, Mar 15 2024 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+1+4*k, n-1-k));

Formula

a(n) = A003520(5*n-3).
a(n) = Sum_{k=0..n} binomial(n+1+4*k,n-1-k).
a(n) = 6*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: x*(1-x)^2/((1-x)^5 - x).

A369839 Number of compositions of 5*n-4 into parts 1 and 5.

Original entry on oeis.org

1, 3, 11, 45, 185, 756, 3084, 12580, 51320, 209365, 854126, 3484490, 14215310, 57992715, 236586825, 965178576, 3937538296, 16063564001, 65532845396, 267347509271, 1090669728772, 4449491452173, 18152125855049, 74053333195325, 302107654008601, 1232477063116753
Offset: 1

Views

Author

Seiichi Manyama, Feb 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6, -10, 10, -5, 1}, {1, 3, 11, 45, 185}, 50] (* Paolo Xausa, Mar 15 2024 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+4*k, n-1-k));

Formula

a(n) = A003520(5*n-4).
a(n) = Sum_{k=0..n} binomial(n+4*k,n-1-k).
a(n) = 6*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: x*(1-x)^3/((1-x)^5 - x).

A243733 Irregular triangular array of numerators of the positive rational numbers ordered as in Comments.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 1, 7, 3, 2, 8, 5, 5, 3, 9, 7, 8, 7, 4, 10, 9, 11, 11, 9, 5, 11, 11, 14, 15, 14, 11, 6, 1, 12, 13, 17, 19, 19, 17, 13, 4, 7, 3, 2, 13, 15, 20, 23, 24, 23, 20, 7, 15, 8, 7, 8, 5, 5, 3, 14, 17, 23, 27, 29, 29, 27, 10, 23, 13, 12, 17, 12, 13
Offset: 1

Views

Author

Clark Kimberling, Jun 09 2014

Keywords

Comments

Suppose that m >= 3, and define sets h(n) of positive rational numbers as follows: h(n) = {n} for n = 1..m, and thereafter, h(n) = Union({x+1: x in h(n-1)}, {x/(x+1) : x in h(n-m)}), with the numbers in h(n) arranged in decreasing order. Every positive rational lies in exactly one of the sets h(n). For the present array, put m = 5 and (row n) = h(n); the number of numbers in h(n) is A003520(n-1). (For m = 3, see A243712.)

Examples

			First 11 rows of the array:
  1/1
  2/1
  3/1
  4/1
  5/1
  6/1 ... 1/2
  7/1 ... 3/2 ... 2/3
  8/1 ... 5/2 ... 5/3 ... 3/4
  9/1 ... 7/2 ... 8/3 ... 7/4 ... 4/5
  10/1 .. 9/2 ... 11/3 .. 11/4 .. 9/5 ... 5/6
  11/1 .. 11/2 .. 14/3 .. 15/4 .. 14/5 .. 11/6 .. 6/7 .. 1/3
The numerators, by rows:  1,2,3,4,5,6,1,7,3,2,8,5,5,3,9,7,8,7,4,10,9,...
		

Crossrefs

Programs

  • Mathematica
    z = 23; g[1] = {1}; g[2] = {2}; g[3] = {3}; g[4] = {4}; g[5] = {5};
    g[n_] := Reverse[Union[1 + g[n - 1], g[n - 5]/(1 + g[n - 5])]]
    Table[g[n], {n, 1, 9}]
    v = Flatten[Table[g[n], {n, 1, z}]];
    v1 = Denominator[v]; (* A243732 *)
    v2 = Numerator[v];   (* A243733 *)

A246690 Number A(n,k) of compositions of n into parts of the k-th list of distinct parts in the order given by A246688; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 2, 0, 1, 0, 1, 1, 0, 3, 1, 1, 0, 1, 0, 1, 1, 5, 0, 1, 0, 1, 1, 0, 2, 0, 8, 1, 1, 0, 1, 0, 1, 0, 3, 0, 13, 0, 1, 0, 1, 0, 1, 1, 1, 4, 1, 21, 1, 1, 0, 1, 1, 0, 1, 2, 0, 6, 0, 34, 0, 1, 0, 1, 1, 2, 0, 1, 3, 0, 9, 0, 55, 1, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Sep 01 2014

Keywords

Comments

The first lists of distinct parts in the order given by A246688 are: 0:[], 1:[1], 2:[2], 3:[1,2], 4:[3], 5:[1,3], 6:[4], 7:[1,4], 8:[2,3], 9:[5], 10:[1,2,3], 11:[1,5], 12:[2,4], 13:[6], 14:[1,2,4], 15:[1,6], 16:[2,5], 17:[3,4], 18:[7], 19:[1,2,5], 20:[1,3,4], ... .

Examples

			Square array A(n,k) begins:
  1, 1, 1,  1, 1,  1, 1,  1, 1, 1,   1, 1, 1, 1,   1, ...
  0, 1, 0,  1, 0,  1, 0,  1, 0, 0,   1, 1, 0, 0,   1, ...
  0, 1, 1,  2, 0,  1, 0,  1, 1, 0,   2, 1, 1, 0,   2, ...
  0, 1, 0,  3, 1,  2, 0,  1, 1, 0,   4, 1, 0, 0,   3, ...
  0, 1, 1,  5, 0,  3, 1,  2, 1, 0,   7, 1, 2, 0,   6, ...
  0, 1, 0,  8, 0,  4, 0,  3, 2, 1,  13, 2, 0, 0,  10, ...
  0, 1, 1, 13, 1,  6, 0,  4, 2, 0,  24, 3, 3, 1,  18, ...
  0, 1, 0, 21, 0,  9, 0,  5, 3, 0,  44, 4, 0, 0,  31, ...
  0, 1, 1, 34, 0, 13, 1,  7, 4, 0,  81, 5, 5, 0,  55, ...
  0, 1, 0, 55, 1, 19, 0, 10, 5, 0, 149, 6, 0, 0,  96, ...
  0, 1, 1, 89, 0, 28, 0, 14, 7, 1, 274, 8, 8, 0, 169, ...
		

Crossrefs

Main diagonal gives A246691.
Cf. A246688, A246720 (the same for partitions).

Programs

  • Maple
    b:= proc(n, i) b(n, i):= `if`(n=0, [[]], `if`(i>n, [],
          [map(x->[i, x[]], b(n-i, i+1))[], b(n, i+1)[]]))
        end:
    f:= proc() local i, l; i, l:=0, [];
          proc(n) while n>=nops(l)
            do l:=[l[], b(i, 1)[]]; i:=i+1 od; l[n+1]
          end
        end():
    g:= proc(n, l) option remember; `if`(n=0, 1,
          add(`if`(i>n, 0, g(n-i, l)), i=l))
        end:
    A:= (n, k)-> g(n, f(k)):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {{}}, If[i>n, {}, Join[Prepend[#, i]& /@ b[n - i, i + 1], b[n, i + 1]]]];
    f = Module[{i = 0, l = {}}, Function[n, While[n >= Length[l], l = Join[l, b[i, 1]]; i++]; l[[n + 1]]]];
    g[n_, l_] := g[n, l] = If[n==0, 1, Sum[If[i>n, 0, g[n - i, l]], {i, l}]];
    A[n_, k_] := g[n, f[k]];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)

A247218 Number of tilings of a 15 X n rectangle using 3n pentominoes of shape I.

Original entry on oeis.org

1, 1, 1, 1, 1, 34, 95, 190, 325, 506, 3324, 10353, 25607, 55346, 108756, 389216, 1208901, 3281686, 8006108, 17950204, 51430928, 150609259, 419540401, 1090827453, 2651884943, 7077981621, 19691707908, 54499735145, 145671654672, 371632691473, 976543067070
Offset: 0

Views

Author

Alois P. Heinz, Nov 26 2014

Keywords

Crossrefs

Column k=5 of A251072.

A247907 Expansion of (1 + x) / ((1 - x^4) * (1 - x - x^5)) in powers of x.

Original entry on oeis.org

1, 2, 2, 2, 3, 5, 7, 9, 12, 16, 21, 28, 38, 51, 67, 88, 117, 156, 207, 274, 363, 481, 637, 844, 1119, 1483, 1964, 2601, 3446, 4566, 6049, 8013, 10615, 14062, 18628, 24677, 32691, 43307, 57369, 75997, 100675, 133367, 176674, 234043, 310041, 410717, 544084
Offset: 0

Views

Author

Michael Somos, Sep 26 2014

Keywords

Examples

			G.f. = 1 + 2*x + 2*x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 7*x^6 + 9*x^7 + 12*x^8 + ...
		

Crossrefs

Programs

  • Magma
    m:=60; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1 +x)/((1-x^4)*(1-x-x^5))));  // G. C. Greubel, Aug 04 2018
  • Mathematica
    CoefficientList[Series[(1 + x)/((1 - x^4) (1 - x - x^5)), {x, 0, 100}], x] (* Vincenzo Librandi, Sep 27 2014 *)
  • PARI
    {a(n) = if( n<0, n=-8-n; polcoeff( -1 / ((1 - x) * (1 - x + x^2) * (1 + x^2) * (1 + x - x^3)) + x * O(x^n), n), polcoeff( 1 / ((1 - x) * (1 - x + x^2) * (1 + x^2) * (1 - x^2 - x^3)) + x * O(x^n), n))};
    

Formula

G.f.: 1 / ((1 - x) * (1 - x + x^2) * (1 + x^2) * (1 - x^2 - x^3)).
a(n) = -A247918(-8-n) for all n in Z.
Convolution of A003520 and A133872.
0 = a(n) + a(n+4) - a(n+5) + mod(floor((n-1) / 2), 2) for all n in Z.
0 = a(n) - a(n+1) + a(n+2) - a(n+3) + a(n+4) - 2*a(n+5) + 2*a(n+6) - 2*a(n+7) + a(n+8) for all n in Z.

A339086 Number of compositions (ordered partitions) of n into distinct parts congruent to 1 mod 5.

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 1, 2, 0, 0, 0, 1, 2, 0, 0, 0, 1, 4, 6, 0, 0, 1, 4, 6, 0, 0, 1, 6, 12, 0, 0, 1, 6, 18, 24, 0, 1, 8, 24, 24, 0, 1, 8, 30, 48, 0, 1, 10, 42, 72, 0, 1, 10, 48, 120, 120, 1, 12, 60, 144, 120, 1, 12, 72, 216, 240, 1, 14, 84, 264, 360, 1, 14, 96, 360, 600, 1, 16, 114
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 23 2020

Keywords

Examples

			a(18) = 6 because we have [11, 6, 1], [11, 1, 6], [6, 11, 1], [6, 1, 11], [1, 11, 6] and [1, 6, 11].
		

Crossrefs

Programs

  • Mathematica
    nmax = 78; CoefficientList[Series[Sum[k! x^(k (5 k - 3)/2)/Product[1 - x^(5 j), {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Sum_{k>=0} k! * x^(k*(5*k - 3)/2) / Product_{j=1..k} (1 - x^(5*j)).
Previous Showing 31-40 of 55 results. Next