cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 107 results. Next

A216546 Decimal expansion of Sum_{k=1..5000000} (-1)^(k-1)/(2k-1).

Original entry on oeis.org

7, 8, 5, 3, 9, 8, 1, 1, 3, 3, 9, 7, 4, 4, 8, 3, 0, 9, 6, 1, 6, 1, 6, 0, 8, 4, 5, 8, 1, 9, 8, 7, 5, 6, 9, 6, 0, 4, 9, 2, 9, 2, 3, 4, 9, 8, 4, 6, 8, 2, 6, 4, 5, 5, 2, 4, 3, 7, 3, 5, 4, 5, 5, 5, 7, 6, 9, 5, 4, 1, 0, 1, 8, 2, 4, 1, 5, 7, 2, 4, 9, 6, 5, 6, 8, 7, 3, 5, 6, 8, 0, 8, 5, 5, 2, 9, 3, 6, 6, 6, 7, 6, 0, 2, 7, 5, 2, 1, 5, 3, 1, 3, 6, 3, 0, 1, 5, 9, 3, 6, 8, 9, 3, 7
Offset: 0

Views

Author

N. J. A. Sloane, Sep 08 2012

Keywords

Comments

An approximation to Pi/4. The constant is rational, by definition (a product of finitely many rational numbers).

Examples

			0.7853981133974483096161608458198756960492923498468264552437...
		

Crossrefs

Programs

  • Maple
    Digits:=300; M:=5000000; add(evalf((-1)^(k-1)/(2*k-1)), k=1..M);
  • Mathematica
    RealDigits[Total[Table[(-1)^(k-1)/(2k-1),{k,5*10^6}]],10,130][[1]] (* Harvey P. Dale, May 06 2015 *)

A258814 Decimal expansion of the Dirichlet beta function of 7.

Original entry on oeis.org

9, 9, 9, 5, 5, 4, 5, 0, 7, 8, 9, 0, 5, 3, 9, 9, 0, 9, 4, 9, 6, 3, 4, 6, 5, 4, 9, 8, 9, 9, 0, 5, 8, 9, 8, 3, 0, 0, 2, 1, 8, 8, 4, 8, 1, 9, 4, 9, 9, 7, 5, 7, 9, 2, 2, 5, 2, 6, 4, 9, 2, 1, 8, 9, 4, 1, 9, 0, 1, 1, 2, 1, 4, 4, 5, 9, 1, 1, 0, 5, 0, 0, 0, 6, 7, 5, 7, 8, 6, 6, 7, 9, 9, 5, 3, 6, 6, 4, 2, 0, 8, 8
Offset: 0

Views

Author

Jean-François Alcover, Jun 11 2015

Keywords

Examples

			0.9995545078905399094963465498990589830021884819499757922526492189419...
		

Crossrefs

Cf. A003881 (beta(1)=Pi/4), A006752 (beta(2)=Catalan), A153071 (beta(3)), A175572 (beta(4)), A175571 (beta(5)), A175570 (beta(6)), A258815 (beta(8)), A258816 (beta(9)).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); 61*Pi(R)^7/184320; // G. C. Greubel, Aug 24 2018
  • Mathematica
    RealDigits[DirichletBeta[7], 10, 102] // First
  • PARI
    61*Pi^7/184320 \\ Charles R Greathouse IV, Dec 06 2016
    

Formula

beta(7) = Sum_{n>=0} (-1)^n/(2n+1)^7 = (zeta(7, 1/4) - zeta(7, 3/4))/16384 = 61*Pi^7/184320.
Equals Product_{p prime >= 3} (1 - (-1)^((p-1)/2)/p^7)^(-1). - Amiram Eldar, Nov 06 2023

A258816 Decimal expansion of the Dirichlet beta function of 9.

Original entry on oeis.org

9, 9, 9, 9, 4, 9, 6, 8, 4, 1, 8, 7, 2, 2, 0, 0, 8, 9, 8, 2, 1, 3, 5, 8, 8, 7, 3, 2, 9, 3, 8, 4, 7, 5, 2, 7, 3, 7, 2, 7, 4, 7, 9, 9, 6, 9, 1, 7, 9, 6, 1, 6, 0, 1, 2, 2, 3, 1, 6, 2, 7, 2, 3, 0, 8, 2, 9, 7, 8, 6, 5, 1, 3, 7, 9, 0, 4, 8, 5, 6, 3, 8, 8, 6, 1, 7, 1, 3, 9, 0, 2, 5, 8, 3, 2, 6, 5, 2, 9, 7, 3, 0, 7, 8
Offset: 0

Views

Author

Jean-François Alcover, Jun 11 2015

Keywords

Examples

			0.999949684187220089821358873293847527372747996917961601223162723...
		

Crossrefs

Cf. A003881 (beta(1)=Pi/4), A006752 (beta(2)=Catalan), A153071 (beta(3)), A175572 (beta(4)), A175571 (beta(5)), A175570 (beta(6)), A258814 (beta(7)), A258815 (beta(8)).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); 277*Pi(R)^9/8257536; // G. C. Greubel, Aug 24 2018
  • Mathematica
    RealDigits[DirichletBeta[9], 10, 104] // First
  • PARI
    default(realprecision, 100); 277*Pi^9/8257536 \\ G. C. Greubel, Aug 24 2018
    

Formula

beta(9) = Sum_{n>=0} (-1)^n/(2n+1)^9 = (zeta(9, 1/4) - zeta(9, 3/4))/262144 = 277*Pi^9/8257536.
Equals Product_{p prime >= 3} (1 - (-1)^((p-1)/2)/p^9)^(-1). - Amiram Eldar, Nov 06 2023

A084254 Decimal expansion of Sum_{k>=1} 1/(k*(exp(2*Pi*k)-1)).

Original entry on oeis.org

0, 0, 1, 8, 7, 2, 6, 8, 2, 4, 4, 9, 7, 6, 8, 5, 4, 6, 1, 1, 5, 6, 3, 8, 5, 7, 9, 4, 7, 9, 9, 6, 1, 3, 9, 8, 8, 6, 9, 1, 6, 2, 8, 9, 5, 6, 5, 2, 6, 1, 9, 5, 6, 3, 8, 4, 1, 3, 3, 1, 5, 7, 4, 5, 3, 7, 8, 8, 4, 3, 1, 9, 5, 1, 7, 0, 9, 8, 0, 2, 2, 6, 7, 5, 1, 7, 0, 7, 2, 7, 8, 4, 0, 2, 4, 5, 6, 7, 9, 7, 9, 9, 8, 7
Offset: 0

Views

Author

Benoit Cloitre, Jun 21 2003

Keywords

Examples

			0.00187268244976854611563857947996139886916289565261...
		

References

  • Bruce C. Berndt, Ramanujan Notebook part II, Infinite series, Springer Verlag, 1989, pp. 280-281.

Crossrefs

Cf. A255695 (S(1,1)), A255697 (S(1,4)), A255698 (S(3,1)), A255699 (S(3,2)), A255700 (S(3,4)), A255701 (S(5,1)), A255702 (S(5,2)), A255703 (S(5,4)).

Programs

  • Mathematica
    digits = 104; S[1, 2] = NSum[1/(n*(Exp[2*Pi*n] - 1)), {n, 1, Infinity}, WorkingPrecision -> digits+10, NSumTerms -> digits]; RealDigits[S[1, 2], 10, digits] // First (* Jean-François Alcover, Mar 02 2015 *)
    Join[{0,0},RealDigits[Log[4/Pi]/4 - Pi/12 + Log[Gamma[3/4]], 10, 100][[1]]] (* Amiram Eldar, May 21 2022 *)
  • PARI
    1/4*log(4/Pi)-Pi/12+log(gamma(3/4))

Formula

Equals log(4/Pi)/4 - Pi/12 + log(Gamma(3/4)).
From Jean-François Alcover, Mar 02 2015: (Start)
This is the case k=1, m=2 of the Plouffe sum S(k,m) = Sum_{n >= 1} 1/(n^k*(exp(m*Pi*n)-1)).
Pi = 72*S(1,1) - 96*S(1,2) + 24*S(1,4). (End)
Equals Sum_{k>=1} sigma(k)/(k*exp(2*Pi*k)). - Amiram Eldar, Jun 05 2023

A258815 Decimal expansion of the Dirichlet beta function of 8.

Original entry on oeis.org

9, 9, 9, 8, 4, 9, 9, 9, 0, 2, 4, 6, 8, 2, 9, 6, 5, 6, 3, 3, 8, 0, 6, 7, 0, 5, 9, 2, 4, 0, 4, 6, 3, 7, 8, 1, 4, 7, 6, 0, 0, 7, 4, 3, 3, 0, 0, 7, 4, 2, 8, 0, 6, 9, 7, 2, 4, 9, 8, 7, 4, 2, 9, 2, 4, 0, 6, 7, 1, 1, 5, 9, 3, 2, 5, 0, 7, 1, 7, 3, 5, 1, 1, 2, 6, 4, 2, 7, 0, 5, 0, 8, 1, 3, 5, 7, 0, 4, 2, 6, 2, 1, 2, 8, 3
Offset: 0

Views

Author

Jean-François Alcover, Jun 11 2015

Keywords

Examples

			0.99984999024682965633806705924046378147600743300742806972498742924...
		

Crossrefs

Cf. A003881 (beta(1)=Pi/4), A006752 (beta(2)=Catalan), A153071 (beta(3)), A175572 (beta(4)), A175571 (beta(5)), A175570 (beta(6)), A258814 (beta(7)), A258816 (beta(9)).

Programs

  • Mathematica
    RealDigits[DirichletBeta[8], 10, 102] // First
  • PARI
    (zetahurwitz(8,1/4)-zetahurwitz(8,3/4))*(1/4)^8 \\ Hugo Pfoertner, Feb 07 2020

Formula

beta(8) = Sum_{n>=0} (-1)^n/(2n+1)^8 = (zeta(8, 1/4) - zeta(8, 3/4))/65536 = (PolyGamma(7, 1/4) - PolyGamma(7, 3/4))/330301440.
Equals ClausenFunction(8, Pi/2).
Equals Product_{p prime >= 3} (1 - (-1)^((p-1)/2)/p^8)^(-1). - Amiram Eldar, Nov 06 2023

A014200 Number of solutions to x^2 + y^2 <= n, excluding (0,0), divided by 4.

Original entry on oeis.org

0, 1, 2, 2, 3, 5, 5, 5, 6, 7, 9, 9, 9, 11, 11, 11, 12, 14, 15, 15, 17, 17, 17, 17, 17, 20, 22, 22, 22, 24, 24, 24, 25, 25, 27, 27, 28, 30, 30, 30, 32, 34, 34, 34, 34, 36, 36, 36, 36, 37, 40, 40, 42, 44, 44, 44, 44, 44, 46
Offset: 0

Views

Author

Keywords

Comments

From Ant King, Mar 15 2013: (Start)
The terms of this sequence give a running total of the excess of the 4k + 1 divisors of the natural numbers (from 1 through to n) over their 4k + 3 divisors.
To see how good the approximation n * Pi/4 is to a(n), note that a(10^6) = 785387 whereas 10^6 * Pi/4 rounds to 785398. (End)

Crossrefs

Partial sums of A002654.

Programs

  • Mathematica
    1/4*Prepend[SquaresR[2,#]&/@Range[58],0]//Accumulate (* Ant King, Mar 15 2013 *)
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, kronecker(-4, k/d))); \\ Seiichi Manyama, Dec 18 2021

Formula

a(n) = A014198(n) / 4.
Limit_{n->infinity} a(n)/n = Pi/4 = A003881.
a(n) = n - floor(n/3) + floor(n/5) - floor(n/7) + floor(n/9) - floor(n/11) + ... - Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 28 2003
G.f.: (1/(1 - x))*Sum_{k>=1} x^k/(1 + x^(2*k)). - Ilya Gutkovskiy, Dec 23 2016

A177870 Decimal expansion of 3*Pi/4.

Original entry on oeis.org

2, 3, 5, 6, 1, 9, 4, 4, 9, 0, 1, 9, 2, 3, 4, 4, 9, 2, 8, 8, 4, 6, 9, 8, 2, 5, 3, 7, 4, 5, 9, 6, 2, 7, 1, 6, 3, 1, 4, 7, 8, 7, 7, 0, 4, 9, 5, 3, 1, 3, 2, 9, 3, 6, 5, 7, 3, 1, 2, 0, 8, 4, 4, 4, 2, 3, 0, 8, 6, 2, 3, 0, 4, 7, 1, 4, 6, 5, 6, 7, 4, 8, 9, 7, 1, 0, 2, 6, 1, 1, 9, 0, 0, 6, 5, 8, 7, 8, 0, 0, 9, 8, 6, 6, 1, 1
Offset: 1

Views

Author

R. J. Mathar, Dec 13 2010

Keywords

Comments

As radians, this is equal to 135 degrees (on an analog clock, the span of 22 minutes and 30 seconds). - Alonso del Arte, Feb 03 2013
Ratio of the area of an arbelos to the area of its associated parbelos. - Jonathan Sondow, Nov 28 2013
(3*Pi/4)*a^2 is the area between a cissoid of Diocles and its asymptote when polar equation of cissoid is r = a*sin^2(t)/cos(t) and Cartesian equation is x * (x^2+y^2) = a * y^2 or y = +-x * sqrt(x/(a-x)). See the curve at the Mathcurve link and formula. - Bernard Schott, Jul 14 2020
The smallest nonnegative solution to sin(x) = -cos(x). - Wolfe Padawer, Apr 12 2023

Examples

			2.35619449019234492884698253745962716314787704953132936573120...
		

References

  • Jonathan Borwein & Peter Borwein, A Dictionary of Real Numbers. Pacific Grove, California: Wadsworth & Brooks/Cole Advanced Books & Software (1990) p. 168

Crossrefs

Reciprocal of A232715.

Programs

  • Maple
    evalf(3*Pi/4) ;
  • Mathematica
    RealDigits[N[3(Pi/4), 110]][[1]]
  • PARI
    3*Pi/4 \\ Charles R Greathouse IV, Sep 30 2022

Formula

Equals (3/4)*A000796 = 3*A003881 = 6*A019675 = A122952/4.
Equals 1 + (3/5) + (3*4)/(5*7) + (3*4*5)/(5*7*9) + ... = hypergeom([3,1],[5/2],1/2). - Peter Bala, Oct 30 2019
Equals 2 * Integral_{x=0..1} x * sqrt(x/(1-x)) dx (cissoid). - Bernard Schott, Jul 14 2020
Equals Sum_{k>=1} arctan(2/k^2). - Amiram Eldar, Aug 10 2020
Equals Integral_{x=-oo..oo} (x^2 + 1)/(x^4 + 4) dx. - Kritsada Moomuang, Jun 04 2025

A244854 Decimal expansion of Pi^2/32.

Original entry on oeis.org

3, 0, 8, 4, 2, 5, 1, 3, 7, 5, 3, 4, 0, 4, 2, 4, 5, 6, 8, 3, 8, 5, 7, 7, 8, 4, 3, 7, 4, 6, 1, 2, 9, 7, 2, 2, 9, 7, 8, 5, 5, 3, 1, 0, 6, 4, 7, 6, 2, 7, 4, 7, 0, 7, 0, 7, 5, 4, 1, 7, 1, 6, 8, 0, 0, 6, 8, 7, 6, 4, 0, 0, 7, 0, 0, 6, 0, 0, 1, 6, 3, 8, 4, 3, 8, 0, 5
Offset: 0

Views

Author

Keywords

Comments

Probability that a point selected uniformly at random from the unit 4-cube is in the unit 4-sphere.
Let S(n) = 1 - 1/3 + 1/5 - ... + ((-1)^(n-1))/(2n-1). Then Sum{n >=1} ((-1)^(n-1))*S(n) /(2n+1) = Pi^2 /32. The convergence is very slow. - Michel Lagneau, Feb 27 2015

Examples

			Choose -1 <= w, x, y, z <= 1 uniformly at random. Then this constant is the probability that w^2 + x^2 + y^2 + z^2 <= 1.
		

Crossrefs

Cf. A003881 (2-dimensional analog), A019673 (3-dimensional analog).

Programs

  • Maple
    Digits:=100; evalf(Pi^2/32); # Wesley Ivan Hurt, Feb 27 2015
  • Mathematica
    RealDigits[Pi^2/32,10,120][[1]] (* Harvey P. Dale, Jul 13 2014 *)
  • PARI
    Pi^2/32

Formula

Equals Integral_{0..infinity} x^2*BesselK(0, x)^2 dx. - Jean-François Alcover, Apr 15 2015
Equals Integral_{x=0..1} arctan(x)/(1+x^2) dx. - Amiram Eldar, Aug 09 2020
Equals Integral_{x=0..1} Integral_{y=0..1} Integral_{z=0..1} (1 + x^2 + y^2 + z^2)^(-2). - Peter Luschny, Dec 10 2022

A308715 Decimal expansion of cosh(Pi/2).

Original entry on oeis.org

2, 5, 0, 9, 1, 7, 8, 4, 7, 8, 6, 5, 8, 0, 5, 6, 7, 8, 2, 0, 0, 9, 9, 9, 5, 6, 4, 3, 2, 6, 9, 4, 0, 5, 9, 4, 8, 2, 1, 2, 0, 2, 4, 3, 5, 8, 1, 4, 8, 1, 5, 2, 2, 7, 4, 0, 4, 7, 9, 7, 5, 6, 8, 6, 1, 4, 8, 9, 8, 5, 8, 9, 1, 0, 8, 8, 5, 3, 2, 1, 3, 8, 2, 6, 8, 6, 5, 2, 5, 2, 2, 2, 2, 4, 6, 5, 4, 6, 9, 4, 9, 9, 8, 9, 0, 1, 9, 9, 8, 0, 2, 1, 4, 6, 7, 0, 7, 5, 5, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 19 2019

Keywords

Examples

			2.50917847865805678200999564326940594821202435...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Cosh[Pi/2], 10, 120][[1]]
  • PARI
    cosh(Pi/2) \\ Michel Marcus, Jun 20 2019

Formula

Equals Product_{k>=1} (1 + 1/(2*k - 1)^2).
Equals Product_{k>=0} (1 + 1/A016754(k)).

A361601 Decimal expansion of the maximum possible disorientation angle between two identical cubes (in radians).

Original entry on oeis.org

1, 0, 9, 6, 0, 5, 6, 8, 1, 5, 2, 4, 0, 6, 2, 5, 4, 8, 9, 0, 6, 1, 7, 2, 6, 5, 6, 5, 6, 4, 1, 2, 5, 7, 3, 5, 6, 9, 5, 9, 4, 2, 4, 7, 2, 7, 3, 1, 8, 4, 0, 8, 6, 3, 3, 9, 9, 1, 0, 9, 6, 8, 7, 7, 7, 2, 0, 6, 7, 8, 8, 7, 1, 0, 9, 2, 9, 7, 0, 9, 1, 0, 7, 7, 9, 8, 7, 0, 6, 3, 1, 4, 8, 8, 8, 2, 5, 7, 5, 7, 5, 7, 6, 9, 1
Offset: 1

Views

Author

Amiram Eldar, Mar 17 2023

Keywords

Comments

Mackenzie and Thomson (1957) attributed the idea of finding this angle to the British theoretical physicist Frederick Charles Frank (1911-1988), who proposed this problem in 1949.
The disorientation angle between two identical bodies is the least angle of rotation about an axis through the center of mass of one of the bodies that is needed to bring it into the same orientation as the other body. For two cubes with indistinguishable faces, there are 24 rotations angles that will bring the first cube into coincidence with the second, and the disorientation angle is the least of them.
The rotation which achieves this maximum disorientation can be described as a rotation by 90 degrees about any axis parallel to a face diagonal of the cube.
The angle in degrees is 62.7994296198...
The solution to the analogous two-dimensional problem with two squares is the trivial value Pi/4 (A003881).

Examples

			1.09605681524062548906172656564125735695942472731840...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ArcCos[Sqrt[2]/2 - 1/4], 10, 100][[1]]
  • PARI
    acos(sqrt(2)/2 - 1/4)

Formula

Equals arccos(sqrt(2)/2 - 1/4).
Equals 2 * arccos(1/2 + sqrt(2)/4).
Equals 2 * arctan((sqrt(2)-1) * sqrt(5-2*sqrt(2))).
Previous Showing 31-40 of 107 results. Next