cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A003881 Decimal expansion of Pi/4.

Original entry on oeis.org

7, 8, 5, 3, 9, 8, 1, 6, 3, 3, 9, 7, 4, 4, 8, 3, 0, 9, 6, 1, 5, 6, 6, 0, 8, 4, 5, 8, 1, 9, 8, 7, 5, 7, 2, 1, 0, 4, 9, 2, 9, 2, 3, 4, 9, 8, 4, 3, 7, 7, 6, 4, 5, 5, 2, 4, 3, 7, 3, 6, 1, 4, 8, 0, 7, 6, 9, 5, 4, 1, 0, 1, 5, 7, 1, 5, 5, 2, 2, 4, 9, 6, 5, 7, 0, 0, 8, 7, 0, 6, 3, 3, 5, 5, 2, 9, 2, 6, 6, 9, 9, 5, 5, 3, 7
Offset: 0

Views

Author

Keywords

Comments

Also the ratio of the area of a circle to the circumscribed square. More generally, the ratio of the area of an ellipse to the circumscribed rectangle. Also the ratio of the volume of a cylinder to the circumscribed cube. - Omar E. Pol, Sep 25 2013
Also the surface area of a quarter-sphere of diameter 1. - Omar E. Pol, Oct 03 2013
Least positive solution to sin(x) = cos(x). - Franklin T. Adams-Watters, Jun 17 2014
Dirichlet L-series of the non-principal character modulo 4 (A101455) at 1. See e.g. Table 22 of arXiv:1008.2547. - R. J. Mathar, May 27 2016
This constant is also equal to the infinite sum of the arctangent functions with nested radicals consisting of square roots of two. Specifically, one of the Viete-like formulas for Pi is given by Pi/4 = Sum_{k = 2..oo} arctan(sqrt(2 - a_{k - 1})/a_k), where the nested radicals are defined by recurrence relations a_k = sqrt(2 + a_{k - 1}) and a_1 = sqrt(2) (see the article [Abrarov and Quine]). - Sanjar Abrarov, Jan 09 2017
Pi/4 is the area enclosed between circumcircle and incircle of a regular polygon of unit side. - Mohammed Yaseen, Nov 29 2023

Examples

			0.785398163397448309615660845819875721049292349843776455243736148...
N = 2, m = 6: Pi/4 = 4!*3^4 Sum_{k >= 0} (-1)^k/((2*k - 11)*(2*k - 5)*(2*k + 1)*(2*k + 7)*(2*k + 13)). - _Peter Bala_, Nov 15 2016
		

References

  • Jörg Arndt and Christoph Haenel, Pi: Algorithmen, Computer, Arithmetik, Springer 2000, p. 150.
  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 437.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 6.3 and 8.4, pp. 429 and 492.
  • Douglas R. Hofstadter, Gödel, Escher, Bach: An Eternal Golden Braid, Basic Books, p. 408.
  • J. Rivaud, Analyse, Séries, équations différentielles, Mathématiques supérieures et spéciales, Premier cycle universitaire, Vuibert, 1981, Exercice 3, p. 136.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 119.

Crossrefs

Cf. A006752 (beta(2)=Catalan), A153071 (beta(3)), A175572 (beta(4)), A175571 (beta(5)), A175570 (beta(6)), A258814 (beta(7)), A258815 (beta(8)), A258816 (beta(9)).
Cf. A001622.

Programs

  • Haskell
    -- see link: Literate Programs
    import Data.Char (digitToInt)
    a003881_list len = map digitToInt $ show $ machin `div` (10 ^ 10) where
       machin = 4 * arccot 5 unity - arccot 239 unity
       unity = 10 ^ (len + 10)
       arccot x unity = arccot' x unity 0 (unity `div` x) 1 1 where
         arccot' x unity summa xpow n sign
        | term == 0 = summa
        | otherwise = arccot'
          x unity (summa + sign * term) (xpow `div` x ^ 2) (n + 2) (- sign)
        where term = xpow `div` n
    -- Reinhard Zumkeller, Nov 20 2012
    
  • Magma
    R:= RealField(100); Pi(R)/4; // G. C. Greubel, Mar 08 2018
  • Maple
    evalf(Pi/4) ;
  • Mathematica
    RealDigits[N[Pi/4,6! ]]  (* Vladimir Joseph Stephan Orlovsky, Dec 02 2009 *)
    (* PROGRAM STARTS *)
    (* Define the nested radicals a_k by recurrence *)
    a[k_] := Nest[Sqrt[2 + #1] & , 0, k]
    (* Example of Pi/4 approximation at K = 100 *)
    Print["The actual value of Pi/4 is"]
    N[Pi/4, 40]
    Print["At K = 100 the approximated value of Pi/4 is"]
    K := 100;  (* the truncating integer *)
    N[Sum[ArcTan[Sqrt[2 - a[k - 1]]/a[k]], {k, 2, K}], 40] (* equation (8) *)
    (* Error terms for Pi/4 approximations *)
    Print["Error terms for Pi/4"]
    k := 1; (* initial value of the index k *)
    K := 10; (* initial value of the truncating integer K *)
    sqn := {}; (* initiate the sequence *)
    AppendTo[sqn, {"Truncating integer K ", " Error term in Pi/4"}];
    While[K <= 30,
    AppendTo[sqn, {K,
       N[Pi/4 - Sum[ArcTan[Sqrt[2 - a[k - 1]]/a[k]], {k, 2, K}], 1000] //
        N}]; K++]
    Print[MatrixForm[sqn]]
    (* Sanjar Abrarov, Jan 09 2017 *)
  • PARI
    Pi/4 \\ Charles R Greathouse IV, Jul 07 2014
    
  • SageMath
    # Leibniz/Cohen/Villegas/Zagier/Arndt/Haenel
    def FastLeibniz(n):
        b = 2^(2*n-1); c = b; s = 0
        for k in range(n-1,-1,-1):
            t = 2*k+1
            s = s + c/t if is_even(k) else s - c/t
            b *= (t*(k+1))/(2*(n-k)*(n+k))
            c += b
        return s/c
    A003881 = RealField(3333)(FastLeibniz(1330))
    print(A003881)  # Peter Luschny, Nov 20 2012
    

Formula

Equals Integral_{x=0..oo} sin(2x)/(2x) dx.
Equals lim_{n->oo} n*A001586(n-1)/A001586(n) (conjecture). - Mats Granvik, Feb 23 2011
Equals Integral_{x=0..1} 1/(1+x^2) dx. - Gary W. Adamson, Jun 22 2003
Equals Integral_{x=0..Pi/2} sin(x)^2 dx, or Integral_{x=0..Pi/2} cos(x)^2 dx. - Jean-François Alcover, Mar 26 2013
Equals (Sum_{x=0..oo} sin(x)*cos(x)/x) - 1/2. - Bruno Berselli, May 13 2013
Equals (-digamma(1/4) + digamma(3/4))/4. - Jean-François Alcover, May 31 2013
Equals Sum_{n>=0} (-1)^n/(2*n+1). - Geoffrey Critzer, Nov 03 2013
Equals Integral_{x=0..1} Product_{k>=1} (1-x^(8*k))^3 dx [cf. A258414]. - Vaclav Kotesovec, May 30 2015
Equals Product_{k in A071904} (if k mod 4 = 1 then (k-1)/(k+1)) else (if k mod 4 = 3 then (k+1)/(k-1)). - Dimitris Valianatos, Oct 05 2016
From Peter Bala, Nov 15 2016: (Start)
For N even: 2*(Pi/4 - Sum_{k = 1..N/2} (-1)^(k-1)/(2*k - 1)) ~ (-1)^(N/2)*(1/N - 1/N^3 + 5/N^5 - 61/N^7 + 1385/N^9 - ...), where the sequence of unsigned coefficients [1, 1, 5, 61, 1385, ...] is A000364. See Borwein et al., Theorem 1 (a).
For N odd: 2*(Pi/4 - Sum_{k = 1..(N-1)/2} (-1)^(k-1)/(2*k - 1)) ~ (-1)^((N-1)/2)*(1/N - 1/N^2 + 2/N^4 - 16/N^6 + 272/N^8 - ...), where the sequence of unsigned coefficients [1, 1, 2, 16, 272, ...] is A000182 with an extra initial term of 1.
For N = 0,1,2,... and m = 1,3,5,... there holds Pi/4 = (2*N)! * m^(2*N) * Sum_{k >= 0} ( (-1)^(N+k) * 1/Product_{j = -N..N} (2*k + 1 + 2*m*j) ); when N = 0 we get the Madhava-Gregory-Leibniz series for Pi/4.
For examples of asymptotic expansions for the tails of these series representations for Pi/4 see A024235 (case N = 1, m = 1), A278080 (case N = 2, m = 1) and A278195 (case N = 3, m = 1).
For N = 0,1,2,..., Pi/4 = 4^(N-1)*N!/(2*N)! * Sum_{k >= 0} 2^(k+1)*(k + N)!* (k + 2*N)!/(2*k + 2*N + 1)!, follows by applying Euler's series transformation to the above series representation for Pi/4 in the case m = 1. (End)
From Peter Bala, Nov 05 2019: (Start)
For k = 0,1,2,..., Pi/4 = k!*Sum_{n = -oo..oo} 1/((4*n+1)*(4*n+3)* ...*(4*n+2*k+1)), where Sum_{n = -oo..oo} f(n) is understood as lim_{j -> oo} Sum_{n = -j..j} f(n).
Equals Integral_{x = 0..oo} sin(x)^4/x^2 dx = Sum_{n >= 1} sin(n)^4/n^2, by the Abel-Plana formula.
Equals Integral_{x = 0..oo} sin(x)^3/x dx = Sum_{n >= 1} sin(n)^3/n, by the Abel-Plana formula. (End)
From Amiram Eldar, Aug 19 2020: (Start)
Equals arcsin(1/sqrt(2)).
Equals Product_{k>=1} (1 - 1/(2*k+1)^2).
Equals Integral_{x=0..oo} x/(x^4 + 1) dx.
Equals Integral_{x=0..oo} 1/(x^2 + 4) dx. (End)
With offset 1, equals 5 * Pi / 2. - Sean A. Irvine, Aug 19 2021
Equals (1/2)!^2 = Gamma(3/2)^2. - Gary W. Adamson, Aug 23 2021
Equals Integral_{x = 0..oo} exp(-x)*sin(x)/x dx (see Rivaud reference). - Bernard Schott, Jan 28 2022
From Amiram Eldar, Nov 06 2023: (Start)
Equals beta(1), where beta is the Dirichlet beta function.
Equals Product_{p prime >= 3} (1 - (-1)^((p-1)/2)/p)^(-1). (End)
Equals arctan( F(1)/F(4) ) + arctan( F(2)/F(3) ), where F(1), F(2), F(3), and F(4) are any four consecutive Fibonacci numbers. - Gary W. Adamson, Mar 03 2024
Pi/4 = Sum_{n >= 1} i/(n*P(n, i)*P(n-1, i)) = (1/2)*Sum_{n >= 1} (-1)^(n+1)*4^n/(n*A006139(n)*A006139(n-1)), where i = sqrt(-1) and P(n, x) denotes the n-th Legendre polynomial. The n-th summand of the series is O( 1/(3 + 2*sqrt(3))^n ). - Peter Bala, Mar 16 2024
Equals arctan( phi^(-3) ) + arctan(phi^(-1) ). - Gary W. Adamson, Mar 27 2024
Equals Sum_{n>=1} eta(n)/2^n, where eta(n) is the Dirichlet eta function. - Antonio Graciá Llorente, Oct 04 2024
Equals Product_{k>=2} ((k + 1)^(k*(2*k + 1))*(k - 1)^(k*(2*k - 1)))/k^(4*k^2). - Antonio Graciá Llorente, Apr 12 2025
Equals Integral_{x=sqrt(2)..oo} dx/(x*sqrt(x^2 - 1)). - Kritsada Moomuang, May 29 2025

Extensions

a(98) and a(99) corrected by Reinhard Zumkeller, Nov 20 2012

A153071 Decimal expansion of L(3, chi4), where L(s, chi4) is the Dirichlet L-function for the non-principal character modulo 4.

Original entry on oeis.org

9, 6, 8, 9, 4, 6, 1, 4, 6, 2, 5, 9, 3, 6, 9, 3, 8, 0, 4, 8, 3, 6, 3, 4, 8, 4, 5, 8, 4, 6, 9, 1, 8, 6, 0, 0, 0, 6, 9, 5, 4, 0, 2, 6, 7, 6, 8, 3, 9, 0, 9, 6, 1, 5, 4, 4, 2, 0, 1, 6, 8, 1, 5, 7, 4, 3, 9, 4, 9, 8, 4, 1, 1, 7, 0, 8, 0, 3, 3, 1, 3, 6, 7, 3, 9, 5, 9, 4, 0, 7
Offset: 0

Views

Author

Stuart Clary, Dec 17 2008

Keywords

Examples

			L(3, chi4) = Pi^3/32 = 0.9689461462593693804836348458469186...
		

References

  • Bruce C. Berndt, Ramanujan's Notebooks, Part II, Springer-Verlag, 1989. See page 293, Entry 25 (iii).
  • Leonhard Euler, Introductio in Analysin Infinitorum, First Part, Articles 175, 284 and 287.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.4.1, p. 20.

Crossrefs

Cf. A003881 (beta(1)=Pi/4), A006752 (beta(2)=Catalan), A175572 (beta(4)), A175571 (beta(5)), A175570 (beta(6)), A258814 (beta(7)), A258815 (beta(8)), A258816 (beta(9)).

Programs

  • Mathematica
    nmax = 1000; First[ RealDigits[Pi^3/32, 10, nmax] ]
  • PARI
    Pi^3/32 \\ Michel Marcus, Aug 15 2018

Formula

chi4(k) = Kronecker(-4, k); chi4(k) is 0, 1, 0, -1 when k reduced modulo 4 is 0, 1, 2, 3, respectively; chi4 is A101455.
Series: L(3, chi4) = Sum_{k>=1} chi4(k) k^{-3} = 1 - 1/3^3 + 1/5^3 - 1/7^3 + 1/9^3 - 1/11^3 + 1/13^3 - 1/15^3 + ...
Series: L(3, chi4) = Sum_{k>=0} tanh((2k+1) Pi/2)/(2k+1)^3. [Ramanujan; see Berndt, page 293]
Closed form: L(3, chi4) = Pi^3/32 = 1/A331095.
Equals Sum_{n>=0} (-1)^n/(2*n+1)^3. - Jean-François Alcover, Mar 29 2013
Equals Product_{k>=3} (1 - tan(Pi/2^k)^4) (Groenman, 1990). - Amiram Eldar, Apr 03 2022
Equals Integral_{x=0..1} arcsinh(x)*arccos(x)/x dx (Kobayashi, 2021). - Amiram Eldar, Jun 23 2023
From Amiram Eldar, Nov 06 2023: (Start)
Equals beta(3), where beta is the Dirichlet beta function.
Equals Product_{p prime >= 3} (1 - (-1)^((p-1)/2)/p^3)^(-1). (End)

Extensions

Offset corrected by R. J. Mathar, Feb 05 2009

A175571 Decimal expansion of the Dirichlet beta function of 5.

Original entry on oeis.org

9, 9, 6, 1, 5, 7, 8, 2, 8, 0, 7, 7, 0, 8, 8, 0, 6, 4, 0, 0, 6, 3, 1, 9, 3, 6, 8, 6, 3, 0, 9, 7, 5, 2, 8, 1, 5, 1, 1, 3, 9, 5, 5, 2, 9, 3, 8, 8, 2, 6, 4, 9, 4, 3, 2, 0, 7, 9, 8, 3, 2, 1, 5, 1, 2, 4, 4, 6, 2, 8, 6, 5, 0, 1, 8, 2, 7, 4, 8, 1, 9, 2, 8, 9, 6, 5, 9, 8, 3, 2, 2, 7, 0, 5, 2, 4, 4, 7, 5, 5, 9, 9, 0, 8, 0
Offset: 0

Views

Author

R. J. Mathar, Jul 15 2010

Keywords

Comments

The value of the Dirichlet L-series L(m=4,r=2,s=4), see arXiv:1008.2547.

Examples

			0.99615782807708806400631936...
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, eq. 308.

Crossrefs

Cf. A003881 (beta(1)=Pi/4), A006752 (beta(2)=Catalan), A153071 (beta(3)), A175572 (beta(4)), A175570 (beta(6)), A258814 (beta(7)), A258815 (beta(8)), A258816 (beta(9)).
Cf. A101455.

Programs

  • Maple
    DirichletBeta := proc(s) 4^(-s)*(Zeta(0,s,1/4)-Zeta(0,s,3/4)) ; end proc: x := DirichletBeta(5) ; x := evalf(x) ;
  • Mathematica
    RealDigits[ DirichletBeta[5], 10, 105] // First (* Jean-François Alcover, Feb 20 2013, updated Mar 14 2018 *)
  • PARI
    5*Pi^5/1536 \\ Charles R Greathouse IV, Jan 31 2018
    
  • PARI
    beta(x)=(zetahurwitz(x,1/4)-zetahurwitz(x,3/4))/4^x
    beta(5) \\ Charles R Greathouse IV, Jan 31 2018

Formula

Equals 5*Pi^5/1536 = Sum_{n>=1} A101455(n)/n^5, where Pi^5 = A092731. [corrected by R. J. Mathar, Feb 01 2018]
Equals Sum_{n>=0} (-1)^n/(2*n+1)^5. - Jean-François Alcover, Mar 29 2013
Equals Product_{p prime >= 3} (1 - (-1)^((p-1)/2)/p^5)^(-1). - Amiram Eldar, Nov 06 2023

A175572 Decimal expansion of the Dirichlet beta function of 4.

Original entry on oeis.org

9, 8, 8, 9, 4, 4, 5, 5, 1, 7, 4, 1, 1, 0, 5, 3, 3, 6, 1, 0, 8, 4, 2, 2, 6, 3, 3, 2, 2, 8, 3, 7, 7, 8, 2, 1, 3, 1, 5, 8, 6, 0, 8, 8, 7, 0, 6, 2, 7, 3, 3, 9, 1, 0, 7, 8, 1, 9, 9, 2, 4, 0, 1, 6, 3, 9, 0, 1, 5, 1, 9, 4, 6, 9, 8, 0, 1, 8, 1, 9, 6, 4, 1, 1, 9, 1, 0, 4, 6, 8, 9, 9, 9, 7, 9, 9, 9, 3, 3, 7, 8, 5, 6, 2, 1
Offset: 0

Views

Author

R. J. Mathar, Jul 15 2010

Keywords

Comments

This is the value of the Dirichlet L-series for A101455 at s=4, see arXiv:1008.2547, L(m=4,r=2,s=4).

Examples

			0.988944551741105336108422633...
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, eq. (308).

Crossrefs

Cf. A003881 (beta(1)=Pi/4), A006752 (beta(2)=Catalan), A153071 (beta(3)), A175571 (beta(5)), A175570 (beta(6)), A258814 (beta(7)), A258815 (beta(8)), A258816 (beta(9)).
Cf. A101455.

Programs

  • Maple
    DirichletBeta := proc(s) 4^(-s)*(Zeta(0,s,1/4)-Zeta(0,s,3/4)) ; end proc: x := DirichletBeta(4) ; x := evalf(x) ;
  • Mathematica
    RealDigits[ DirichletBeta[4], 10, 105] // First (* Jean-François Alcover, Feb 11 2013, updated Mar 14 2018 *)
  • PARI
    beta(x)=(zetahurwitz(x,1/4)-zetahurwitz(x,3/4))/4^x
    beta(4) \\ Charles R Greathouse IV, Jan 31 2018

Formula

Equals Sum_{n>=1} A101455(n)/n^4. [corrected by R. J. Mathar, Feb 01 2018]
Equals (PolyGamma(3, 1/4) - PolyGamma(3, 3/4))/1536. - Jean-François Alcover, Jun 11 2015
Equals Product_{p prime >= 3} (1 - (-1)^((p-1)/2)/p^4)^(-1). - Amiram Eldar, Nov 06 2023

A175570 Decimal expansion of the Dirichlet beta function of 6.

Original entry on oeis.org

9, 9, 8, 6, 8, 5, 2, 2, 2, 2, 1, 8, 4, 3, 8, 1, 3, 5, 4, 4, 1, 6, 0, 0, 7, 8, 7, 8, 6, 0, 2, 0, 6, 5, 4, 9, 6, 7, 8, 3, 6, 4, 5, 4, 6, 1, 2, 6, 5, 1, 4, 4, 1, 1, 4, 0, 4, 1, 2, 6, 4, 5, 1, 2, 2, 9, 7, 1, 2, 7, 5, 2, 5, 5, 9, 0, 3, 1, 0, 8, 9, 4, 5, 5, 4, 8, 2, 1, 8, 4, 5, 3, 8, 6, 2, 9, 7, 9, 7, 8, 4, 0, 7, 8, 2
Offset: 0

Views

Author

R. J. Mathar, Jul 15 2010

Keywords

Examples

			0.998685222218438135441600...
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, eq. 308.

Crossrefs

Cf. A003881 (beta(1)=Pi/4), A006752 (beta(2)=Catalan), A153071 (beta(3)), A175572 (beta(4)), A175571 (beta(5)), A258814 (beta(7)), A258815 (beta(8)), A258816 (beta(9)).
Cf. A101455.

Programs

  • Maple
    DirichletBeta := proc(s) 4^(-s)*(Zeta(0,s,1/4)-Zeta(0,s,3/4)) ; end proc: x := DirichletBeta(6) ; x := evalf(x) ;
  • Mathematica
    RealDigits[ DirichletBeta[6], 10, 105] // First (* Jean-François Alcover, Feb 11 2013, updated Mar 14 2018 *)
  • PARI
    beta(x)=(zetahurwitz(x,1/4)-zetahurwitz(x,3/4))/4^x
    beta(6) \\ Charles R Greathouse IV, Jan 31 2018
    
  • PARI
    sumpos(n=1,(12288*n^5 - 30720*n^4 + 33280*n^3 - 19200*n^2 + 5808*n - 728)/(16777216*n^12 - 100663296*n^11 + 270532608*n^10 - 429916160*n^9 + 449249280*n^8 - 324796416*n^7 + 166445056*n^6 - 60899328*n^5 + 15793920*n^4 - 2833920*n^3 + 334368*n^2 - 23328*n + 729),1) \\ Charles R Greathouse IV, Feb 01 2018

Formula

Equals Sum_{n>=1} A101455(n)/n^6. [see arxiv:1008.2547, L(m=4,r=2,s=6)] [corrected by R. J. Mathar, Feb 01 2018]
Equals (PolyGamma(5, 1/4) - PolyGamma(5, 3/4))/491520. - Jean-François Alcover, Jun 11 2015
Equals Product_{p prime >= 3} (1 - (-1)^((p-1)/2)/p^6)^(-1). - Amiram Eldar, Nov 06 2023

A321830 a(n) = Sum_{d|n, n/d==1 mod 4} d^6 - Sum_{d|n, n/d==3 mod 4} d^6.

Original entry on oeis.org

1, 64, 728, 4096, 15626, 46592, 117648, 262144, 530713, 1000064, 1771560, 2981888, 4826810, 7529472, 11375728, 16777216, 24137570, 33965632, 47045880, 64004096, 85647744, 113379840, 148035888, 190840832, 244156251, 308915840, 386889776
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Cf. A321543 - A321565, A321807 - A321836 for similar sequences.
Glaisher's E'_i (i=0..12): A002654, A050469, A050470, A050471, A050468, A321829, this sequence, A321831, A321832, A321833, A321834, A321835, A321836.

Programs

  • Mathematica
    s[n_,r_] := DivisorSum[n, #^6 &, Mod[n/#,4]==r &]; a[n_] := s[n,1] - s[n,3]; Array[a, 30] (* Amiram Eldar, Nov 26 2018 *)
    s[n_] := If[OddQ[n], (-1)^((n-1)/2), 0]; (* A101455 *)
    f[p_, e_] := (p^(6*e+6) - s[p]^(e+1))/(p^6 - s[p]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 04 2023 *)
  • PARI
    apply( A321830(n)=factorback(apply(f->f[1]^(6*f[2]+6)\/(f[1]^6+f[1]%4-2),Col(factor(n)))), [1..30]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} k^6*x^k/(1 + x^(2*k)). - Ilya Gutkovskiy, Nov 26 2018
Multiplicative with a(p^e) = round(p^(6e+6)/(p^6 + p%4 - 2)), where p%4 is the remainder of p modulo 4. (Following R. Israel in A321833.) - M. F. Hasler, Nov 26 2018
Sum_{k=1..n} a(k) ~ c * n^7 / 7, where c = 61*Pi^7/184320 (A258814). - Amiram Eldar, Nov 04 2023
a(n) = Sum_{d|n} (n/d)^6*sin(d*Pi/2). - Ridouane Oudra, Sep 27 2024

A258816 Decimal expansion of the Dirichlet beta function of 9.

Original entry on oeis.org

9, 9, 9, 9, 4, 9, 6, 8, 4, 1, 8, 7, 2, 2, 0, 0, 8, 9, 8, 2, 1, 3, 5, 8, 8, 7, 3, 2, 9, 3, 8, 4, 7, 5, 2, 7, 3, 7, 2, 7, 4, 7, 9, 9, 6, 9, 1, 7, 9, 6, 1, 6, 0, 1, 2, 2, 3, 1, 6, 2, 7, 2, 3, 0, 8, 2, 9, 7, 8, 6, 5, 1, 3, 7, 9, 0, 4, 8, 5, 6, 3, 8, 8, 6, 1, 7, 1, 3, 9, 0, 2, 5, 8, 3, 2, 6, 5, 2, 9, 7, 3, 0, 7, 8
Offset: 0

Views

Author

Jean-François Alcover, Jun 11 2015

Keywords

Examples

			0.999949684187220089821358873293847527372747996917961601223162723...
		

Crossrefs

Cf. A003881 (beta(1)=Pi/4), A006752 (beta(2)=Catalan), A153071 (beta(3)), A175572 (beta(4)), A175571 (beta(5)), A175570 (beta(6)), A258814 (beta(7)), A258815 (beta(8)).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); 277*Pi(R)^9/8257536; // G. C. Greubel, Aug 24 2018
  • Mathematica
    RealDigits[DirichletBeta[9], 10, 104] // First
  • PARI
    default(realprecision, 100); 277*Pi^9/8257536 \\ G. C. Greubel, Aug 24 2018
    

Formula

beta(9) = Sum_{n>=0} (-1)^n/(2n+1)^9 = (zeta(9, 1/4) - zeta(9, 3/4))/262144 = 277*Pi^9/8257536.
Equals Product_{p prime >= 3} (1 - (-1)^((p-1)/2)/p^9)^(-1). - Amiram Eldar, Nov 06 2023

A258815 Decimal expansion of the Dirichlet beta function of 8.

Original entry on oeis.org

9, 9, 9, 8, 4, 9, 9, 9, 0, 2, 4, 6, 8, 2, 9, 6, 5, 6, 3, 3, 8, 0, 6, 7, 0, 5, 9, 2, 4, 0, 4, 6, 3, 7, 8, 1, 4, 7, 6, 0, 0, 7, 4, 3, 3, 0, 0, 7, 4, 2, 8, 0, 6, 9, 7, 2, 4, 9, 8, 7, 4, 2, 9, 2, 4, 0, 6, 7, 1, 1, 5, 9, 3, 2, 5, 0, 7, 1, 7, 3, 5, 1, 1, 2, 6, 4, 2, 7, 0, 5, 0, 8, 1, 3, 5, 7, 0, 4, 2, 6, 2, 1, 2, 8, 3
Offset: 0

Views

Author

Jean-François Alcover, Jun 11 2015

Keywords

Examples

			0.99984999024682965633806705924046378147600743300742806972498742924...
		

Crossrefs

Cf. A003881 (beta(1)=Pi/4), A006752 (beta(2)=Catalan), A153071 (beta(3)), A175572 (beta(4)), A175571 (beta(5)), A175570 (beta(6)), A258814 (beta(7)), A258816 (beta(9)).

Programs

  • Mathematica
    RealDigits[DirichletBeta[8], 10, 102] // First
  • PARI
    (zetahurwitz(8,1/4)-zetahurwitz(8,3/4))*(1/4)^8 \\ Hugo Pfoertner, Feb 07 2020

Formula

beta(8) = Sum_{n>=0} (-1)^n/(2n+1)^8 = (zeta(8, 1/4) - zeta(8, 3/4))/65536 = (PolyGamma(7, 1/4) - PolyGamma(7, 3/4))/330301440.
Equals ClausenFunction(8, Pi/2).
Equals Product_{p prime >= 3} (1 - (-1)^((p-1)/2)/p^8)^(-1). - Amiram Eldar, Nov 06 2023

A016759 a(n) = (2*n + 1)^7.

Original entry on oeis.org

1, 2187, 78125, 823543, 4782969, 19487171, 62748517, 170859375, 410338673, 893871739, 1801088541, 3404825447, 6103515625, 10460353203, 17249876309, 27512614111, 42618442977, 64339296875, 94931877133, 137231006679, 194754273881, 271818611107, 373669453125, 506623120463
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(2*n+1)^7: n in [0..30]]; // Vincenzo Librandi, Sep 07 2011
    
  • Mathematica
    Table[(2*n+1)^7, {n,0,30}] (* G. C. Greubel, Sep 15 2018 *)
    LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{1,2187,78125,823543,4782969,19487171,62748517,170859375},20] (* Harvey P. Dale, Jul 09 2019 *)
  • PARI
    a(n) = (2*n+1)^7; \\ Michel Marcus, Mar 07 2016

Formula

a(n) = A001015(A005408(n)). - Michel Marcus, Mar 07 2016
G.f.: (1+x)*(x^6 + 2178*x^5 + 58479*x^4 + 201244*x^3 + 58479*x^2 + 2178*x + 1)/(x-1)^8. - R. J. Mathar, Jul 07 2017
From Amiram Eldar, Oct 10 2020: (Start)
Sum_{n>=0} 1/a(n) = 127*zeta(7)/128.
Sum_{n>=0} (-1)^n/a(n) = 61*Pi^7/184320 (A258814). (End)
Showing 1-9 of 9 results.