cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 107 results. Next

A004711 Positions of 1's in binary expansion of Pi/4.

Original entry on oeis.org

1, 2, 5, 8, 13, 14, 15, 16, 17, 18, 20, 21, 23, 25, 27, 31, 35, 40, 42, 43, 45, 49, 50, 55, 59, 60, 62, 65, 66, 70, 73, 74, 78, 79, 82, 83, 87, 89, 93, 95, 96, 97, 105, 106, 108, 109, 110, 116, 117, 118, 121, 122, 124
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[Position[RealDigits[Pi/4,2,150][[1]],1]] (* Harvey P. Dale, Jul 13 2015 *)
  • PARI
    default(realprecision, 100); select(x->(x==1), binary(Pi/4)[2], 1) \\ Michel Marcus, Oct 11 2018

Formula

a(n) = A256108(n) + 2. - Lorenzo Sauras Altuzarra, Jan 21 2020

A134013 Expansion of q * phi(q) * psi(q^8) in powers of q where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, 0, 0, 2, 0, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 3, 4, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 6, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 1, 4, 0, 0, 4, 0, 0
Offset: 1

Views

Author

Michael Somos, Oct 02 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q + 2*q^2 + 2*q^5 + q^9 + 4*q^10 + 2*q^13 + 2*q^17 + 2*q^18 + 3*q^25 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (1/2) EllipticTheta[ 3, 0, q] EllipticTheta[ 2, 0, q^4], {q, 0, n}]; (* Michael Somos, Oct 30 2015 *)
  • PARI
    {a(n) = if( n>0 && (n+1)%4\2, (n%4) * sumdiv( n/gcd(n,2), d, (-1)^(d\2)))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^16 + A)^2 / (eta(x + A)^2 * eta(x^4 + A)^2 * eta(x^8 + A)), n))};

Formula

Expansion of eta(q^2)^5 * eta(q^16)^2 / ( eta(q)^2 * eta(q^4)^2 * eta(q^8) ) in powers of q.
Euler transform of period 16 sequence [ 2, -3, 2, -1, 2, -3, 2, 0, 2, -3, 2, -1, 2, -3, 2, -2, ...].
Moebius transform is period 16 sequence [ 1, 1, -1, -2, 1, -1, -1, 0, 1, 1, -1, 2, 1, -1, -1, 0, ...].
a(n) is multiplicative with a(2) = 2, a(2^e) = 0 if e>1, a(p^e) = e+1 if p == 1 (mod 4), a(p^e) = (1 + (-1)^e)/2 if p == 3 (mod 4).
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 2 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A134014.
a(4*n) = a(4*n + 3) = a(8*n + 6) = 0. a(8*n + 2) = 2 * a(4*n + 1).
G.f.: Sum_{k>0} Kronecker(-4, k) * x^k * (1 + x^k)^2 / (1 - x^(4*k)).
a(n) = -(-1)^n * A112301(n). a(4*n + 1) = A008441(n). a(8*n + 1) = A113407(n). a(8*n = 5) = 2 * A053692(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/4 (A003881). - Amiram Eldar, Nov 24 2023

A141904 Triangle of the numerators of coefficients c(n,k) = [x^k] P(n,x) of some polynomials P(n,x).

Original entry on oeis.org

1, -1, 1, 1, -2, 1, -1, 23, -1, 1, 1, -44, 14, -4, 1, -1, 563, -818, 22, -5, 1, 1, -3254, 141, -1436, 19, -2, 1, -1, 88069, -13063, 21757, -457, 43, -7, 1, 1, -11384, 16774564, -11368, 7474, -680, 56, -8, 1, -1, 1593269, -1057052, 35874836, -261502, 3982, -688, 212, -3, 1, 1, -15518938, 4651811
Offset: 0

Views

Author

Paul Curtz, Sep 14 2008

Keywords

Comments

Let the polynomials P be defined by P(0,x)=u(0), P(n,x)= u(n) + x*sum_{i=0..n-1} u(i)*P(n-i-1,x) and coefficients u(i)=(-1)^i/(2i+1). These u are reminiscent of the Leibniz' Taylor expansion to calculate arctan(1) =pi/4 = A003881. Then P(n,x) = sum_{k=0..n} c(n,k)*x^k.

Examples

			The polynomials P(n,x) are for n=0 to 5:
1 = P(0,x).
-1/3+x = P(1,x).
1/5-2/3*x+x^2 = P(2,x).
-1/7+23/45*x-x^2+x^3 = P(3,x).
1/9-44/105*x+14/15*x^2-4/3*x^3+x^4 = P(4,x).
-1/11+563/1575*x-818/945*x^2+22/15*x^3-5/3*x^4+x^5 = P(5,x).
		

References

  • P. Curtz, Gazette des Mathematiciens, 1992, no. 52, p.44.
  • P. Flajolet, X. Gourdon, B. Salvy, Gazette des Mathematiciens, 1993, no. 55, pp.67-78.

Crossrefs

Cf. A142048 (denominators), A140749, A141412 (where u=(-1)^i/(i+1)).

Programs

  • Maple
    u := proc(i) (-1)^i/(2*i+1) ; end:
    P := proc(n,x) option remember ; if n =0 then u(0); else u(n)+x*add( u(i)*procname(n-1-i,x),i=0..n-1) ; expand(%) ; fi; end:
    A141904 := proc(n,k) p := P(n,x) ; numer(coeftayl(p,x=0,k)) ; end: seq(seq(A141904(n,k),k=0..n),n=0..13) ; # R. J. Mathar, Aug 24 2009
  • Mathematica
    ClearAll[u, p]; u[n_] := (-1)^n/(2*n + 1); p[0][x_] := u[0]; p[n_][x_] := p[n][x] = u[n] + x*Sum[u[i]*p[n - i - 1][x] , {i, 0, n-1}] // Expand; row[n_] := CoefficientList[ p[n][x], x]; Table[row[n], {n, 0, 10}] // Flatten // Numerator (* Jean-François Alcover, Oct 02 2012 *)

Extensions

Edited and extended by R. J. Mathar, Aug 24 2009

A151842 a(3n) = n, a(3n+1) = 2n+1, a(3n+2) = n+1.

Original entry on oeis.org

0, 1, 1, 1, 3, 2, 2, 5, 3, 3, 7, 4, 4, 9, 5, 5, 11, 6, 6, 13, 7, 7, 15, 8, 8, 17, 9, 9, 19, 10, 10, 21, 11, 11, 23, 12, 12, 25, 13, 13, 27, 14, 14, 29, 15, 15, 31, 16, 16, 33, 17, 17, 35, 18, 18, 37, 19, 19, 39, 20, 20, 41, 21, 21, 43, 22, 22, 45, 23, 23, 47
Offset: 0

Views

Author

Shane Geiger (shane.geiger(AT)gmail.com), Jul 14 2009

Keywords

Comments

Take a list of numbers (like 0,1,2,3,4,5,...) and then pair them up like this: (0,1)(1,2),(2,3),(3,4)... Then sum each pair, and insert the sum between the numbers, like this: (0,1,1), (1,3,2), (2,5,3), ... Finally, remove the parentheses: 0,1,1,1,3,2,2,5,3,...
This mirrors the pattern used to make a dragon curve fractal. You take two points, then find one to insert between them. In the next iteration, you take those three points and find two numbers to insert between them. (Rather than summing the two numbers, a different function is used to find a point relative to two other points.)
a(n) is the number of rises in all compositions of n + 2 with parts in {1,2} and adjacent differences in {-1,1}. - John Tyler Rascoe, Apr 29 2025

Examples

			G.f. = x + x^2 + x^3 + 3*x^4 + 2*x^5 + 2*x^6 + 5*x^7 + 3*x^8 + 3*x^9 + ... - _Michael Somos_, Aug 12 2009
		

Crossrefs

See A076118 for a version with signs.

Programs

  • Magma
    I:=[0,1,1,1,3,2]; [n le 6 select I[n] else 2*Self(n-3)-Self(n-6): n in [1..80]]; // Vincenzo Librandi, Feb 14 2015
  • Mathematica
    CoefficientList[Series[x (1 + x) (1 + x^2) / ((x - 1)^2 (1 + x + x^2)^2), {x, 0, 70}], x] (* Vincenzo Librandi, Feb 14 2015 *)
  • PARI
    {a(n) = kronecker(9, n) + (n\3) * [1, 2, 1][n%3 + 1]} /* Michael Somos, Aug 12 2009 */
    
  • Python
    def pairup(x): return [x[i:i+2] for i in range(len(x)-1)]
    def combine(vals): return sum(vals)
    def expand(L,fn): return [(x[0],fn(x),x[1]) for x in pairup(L)]
    L = list(range(20))
    print(expand(L,combine))
    

Formula

From R. J. Mathar, Jul 14 2009: (Start)
G.f.: x*(1+x)*(1+x^2)/((x-1)^2*(1+x+x^2)^2).
a(n) = 2*a(n-3) - a(n-6). (End)
From Michael Somos, Aug 12 2009: (Start)
G.f.: x * (1 - x^4) / ((1 - x) * (1 - x^3)^2).
Euler transform of length 4 sequence [ 1, 0, 2, -1]. (End)
-a(n) = a(-1-n). - Michael Somos, Nov 11 2013
From Ridouane Oudra, Nov 23 2024: (Start)
a(n) = 5*n/6 + n^2/2 - n^3/3 + (2*n^2 - n - 3/2)*floor(n/3) - (3*n + 3/2)*floor(n/3)^2.
a(n) = t(n+2)*t(n+3) - t(n)*t(n+1), where t(n) = floor(n/3) = A002264(n).
a(n) = A008133(n+2) - A008133(n). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/4 (A003881). - Amiram Eldar, May 10 2025

Extensions

More terms from Vincenzo Librandi, Feb 14 2015

A231902 Decimal expansion of Pi/4 + log(2)/2.

Original entry on oeis.org

1, 1, 3, 1, 9, 7, 1, 7, 5, 3, 6, 7, 7, 4, 2, 0, 9, 6, 4, 3, 2, 4, 2, 7, 6, 9, 0, 6, 5, 4, 8, 9, 6, 4, 0, 0, 5, 0, 8, 7, 0, 4, 2, 4, 1, 7, 0, 2, 3, 9, 0, 4, 0, 8, 2, 3, 0, 4, 0, 7, 6, 1, 5, 2, 8, 2, 3, 6, 5, 0, 9, 1, 2, 5, 5, 6, 3, 9, 9, 6, 0, 7, 4, 5, 9, 9, 4
Offset: 1

Views

Author

Bruno Berselli, Nov 15 2013

Keywords

Examples

			1.131971753677420964324276906548964005087042417023904082304076152823650...
		

References

  • L. B. W. Jolley, Summation of series, Dover Publications Inc. (New York), 1961, p. 28 (formula 154).
  • Jean-Marie Monier, Analyse, Exercices corrigés, 2ème année MP, Dunod, 1997, Exercice 3.15, p. 269.

Crossrefs

Cf. A003881 (Pi/4), A016655 (10*(log(2)/2)), A072691 (Pi^2/12).
Cf. A006752 (Catalan's constant)
Cf. A196521 (Pi/4-log(2)/2).
Cf. A037800.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); (Pi(R) + 2*Log(2))/4; // G. C. Greubel, Aug 24 2018
  • Mathematica
    RealDigits[Pi/4 + Log[2]/2, 10, 90][[1]]
  • PARI
    default(realprecision, 100); (Pi + 2*log(2))/4 \\ G. C. Greubel, Aug 24 2018
    

Formula

Equals 1 + Sum_{m>=1} -(-1)^m/(2*m*(2*m+1)) = 1 + 1/(2*3) - 1/(4*5) + 1/(6*7) - 1/(8*9) + ... .
From Amiram Eldar, Jul 16 2020: (Start)
Equals Integral_{x=1..oo} arctan(x)/x^2 dx.
Equals 1 + Integral_{x=0..1/2} log(4*x^2 + 1) dx. (End)
From Bernard Schott, Sep 07 2020: (Start)
Equals -Sum_{n>=1} (-1)^(n*(n+1)/2) / n [compare with A196521 formula].
Equals Sum_{n>=0} (32*n^2+40*n+11) / (4*(n+1)*(2*n+1)*(4*n+1)*(4*n+3)). (End)
Equals 1 + Sum_{k>=1} A037800(k)/(k*(k+1)) (Allouche and Shallit, 1990). - Amiram Eldar, Jun 01 2021

A243445 Decimal expansion of the polar angle of the cone circumscribed to a regular dodecahedron from one of its vertices.

Original entry on oeis.org

1, 2, 0, 5, 9, 3, 2, 4, 9, 8, 6, 8, 1, 4, 1, 3, 4, 3, 7, 5, 0, 3, 9, 2, 3, 3, 6, 1, 7, 3, 3, 0, 9, 1, 0, 9, 4, 4, 0, 0, 3, 3, 1, 7, 4, 2, 6, 6, 3, 6, 9, 6, 0, 6, 5, 1, 3, 2, 9, 9, 7, 5, 5, 0, 4, 2, 2, 9, 9, 8, 7, 5, 3, 3, 0, 9, 7, 2, 0, 9, 2, 9, 9, 1, 6, 2, 7
Offset: 1

Views

Author

Stanislav Sykora, Jun 06 2014

Keywords

Comments

The angle is in radians.

Examples

			1.20593249868141343750392336173309109440033174266369606513299755...
		

Crossrefs

Cf. A001622 (phi), A003881 (octahedron), A195695 (tetrahedron), A195696 (cube), A195723 (isosahedron).

Programs

  • Mathematica
    RealDigits[ArcCos[1/(GoldenRatio Sqrt[3])],10,120][[1]] (* Harvey P. Dale, May 17 2016 *)
  • PARI
    acos(2/(1+sqrt(5))/sqrt(3))

Formula

arccos(1/(phi*sqrt(3))), where phi = A001622.
arctan(phi^2), where phi = A001622. - Jon Maiga, Nov 11 2018

A261624 Decimal expansion of the Dirichlet beta function at 1/5.

Original entry on oeis.org

5, 7, 3, 7, 1, 0, 8, 4, 7, 1, 8, 5, 9, 4, 6, 6, 4, 9, 3, 5, 7, 2, 6, 6, 5, 2, 7, 8, 3, 2, 0, 0, 4, 1, 7, 0, 4, 3, 6, 2, 4, 6, 9, 3, 8, 2, 4, 2, 6, 9, 0, 9, 3, 7, 6, 1, 8, 9, 5, 3, 6, 2, 8, 2, 5, 0, 7, 9, 2, 5, 3, 6, 1, 1, 2, 6, 5, 9, 4, 2, 1, 5, 7, 5, 0, 6, 2, 8, 3, 0, 1, 9, 3, 3, 1, 7, 4, 2, 4, 8, 8, 1
Offset: 0

Views

Author

Jean-François Alcover, Aug 27 2015

Keywords

Examples

			0.57371084718594664935726652783200417043624693824269093761895362825...
		

Crossrefs

Cf. A003881 (beta(1)=Pi/4), A006752 (beta(2)=Catalan), A153071 (beta(3)), A175572 (beta(4)), A175571 (beta(5)), A175570 (beta(6)), A261622 (beta(1/3)), A261623 (beta(1/4)).

Programs

  • Maple
    evalf(Sum((-1)^n/(2*n+1)^(1/5), n=0..infinity), 120); # Vaclav Kotesovec, Aug 27 2015
  • Mathematica
    RealDigits[DirichletBeta[1/5],10,102]//First
  • PARI
    beta(x)=(zetahurwitz(x, 1/4)-zetahurwitz(x, 3/4))/4^x
    beta(.2) \\ Charles R Greathouse IV, Oct 18 2024

Formula

beta(1/5) = (zeta(1/5, 1/4) - zeta(1/5, 3/4))/2^(2/5).

A387322 Decimal expansion of the fourth largest dihedral angle, in radians, in a gyroelongated square cupola (Johnson solid J_23).

Original entry on oeis.org

2, 4, 7, 1, 2, 9, 0, 5, 4, 5, 6, 4, 6, 9, 7, 8, 5, 7, 5, 4, 7, 3, 2, 5, 4, 7, 9, 6, 1, 5, 5, 2, 5, 3, 7, 9, 9, 4, 8, 5, 7, 4, 9, 3, 3, 3, 0, 8, 8, 6, 0, 0, 4, 9, 0, 5, 5, 9, 0, 9, 1, 7, 6, 3, 3, 7, 9, 5, 6, 7, 4, 2, 7, 0, 4, 6, 5, 3, 8, 4, 9, 4, 3, 2, 1, 6, 9, 2, 5, 4
Offset: 1

Views

Author

Paolo Xausa, Aug 29 2025

Keywords

Comments

This is the dihedral angle between a triangular face and a square face at the edge where the antiprism and cupola parts of the solid meet.
Also the analogous dihedral angle in a gyroelongated square bicupola (Johnson solid J_45).

Examples

			2.4712905456469785754732547961552537994857493330886...
		

Crossrefs

Cf. other J_23 dihedral angles: A177870, A195702, A387320, A387321, A387323.
Cf. A384214 (J_23 volume), A384215 (J_23 surface area).
Cf. A385258 (J_45 volume), A385259 (J_45 surface area).

Programs

  • Mathematica
    First[RealDigits[Pi/4 + ArcCos[-Sqrt[(7 + Sqrt[32] - 2*Sqrt[20 + 14*Sqrt[2]])/3]], 10, 100]] (* or *)
    First[RealDigits[RankedMax[Union[PolyhedronData["J23", "DihedralAngles"]], 4], 10, 100]]

Formula

Equals Pi/4 + arccos(-sqrt((7 + 4*sqrt(2) - 2*sqrt(20 + 14*sqrt(2)))/3)) = A003881 + arccos(-sqrt((7 + A010487 - 2*sqrt(20 + 14*A002193))/3)).
Equals A003881 + A387323.

A387323 Decimal expansion of the smallest dihedral angle, in radians, in a gyroelongated square cupola (Johnson solid J_23).

Original entry on oeis.org

1, 6, 8, 5, 8, 9, 2, 3, 8, 2, 2, 4, 9, 5, 3, 0, 2, 6, 5, 8, 5, 7, 5, 9, 3, 9, 5, 0, 3, 3, 5, 3, 7, 8, 0, 7, 8, 4, 3, 6, 4, 5, 6, 9, 8, 3, 2, 4, 4, 8, 2, 4, 0, 3, 5, 3, 1, 5, 3, 5, 5, 6, 1, 5, 3, 0, 2, 6, 1, 3, 3, 2, 5, 4, 7, 4, 9, 8, 6, 2, 4, 4, 6, 6, 4, 6, 8, 3, 8, 3
Offset: 1

Views

Author

Paolo Xausa, Aug 29 2025

Keywords

Comments

This is the dihedral angle between a triangular face and the octagonal face.

Examples

			1.6858923822495302658575939503353780784364569832448...
		

Crossrefs

Cf. other J_23 dihedral angles: A177870, A195702, A387320, A387321, A387322.
Cf. A384214 (J_23 volume), A384215 (J_23 surface area).

Programs

  • Mathematica
    First[RealDigits[ArcCos[-Sqrt[(7 + Sqrt[32] - 2*Sqrt[20 + 14*Sqrt[2]])/3]], 10, 100]] (* or *)
    First[RealDigits[Min[PolyhedronData["J23", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos(-sqrt((7 + 4*sqrt(2) - 2*sqrt(20 + 14*sqrt(2)))/3)) = arccos(-sqrt((7 + A010487 - 2*sqrt(20 + 14*A002193))/3)).

A105532 Decimal expansion of arctan(1/5).

Original entry on oeis.org

1, 9, 7, 3, 9, 5, 5, 5, 9, 8, 4, 9, 8, 8, 0, 7, 5, 8, 3, 7, 0, 0, 4, 9, 7, 6, 5, 1, 9, 4, 7, 9, 0, 2, 9, 3, 4, 4, 7, 5, 8, 5, 1, 0, 3, 7, 8, 7, 8, 5, 2, 1, 0, 1, 5, 1, 7, 6, 8, 8, 9, 4, 0, 2, 4, 1, 0, 3, 3, 9, 6, 9, 9, 7, 8, 2, 4, 3, 7, 8, 5, 7, 3, 2, 6, 9, 7, 8, 2, 8, 0, 3, 7, 2, 8, 8, 0, 4, 4, 1, 1, 2, 6, 2, 8
Offset: 0

Views

Author

Bryan Jacobs (bryanjj(AT)gmail.com), Apr 12 2005

Keywords

Examples

			0.197395559849880758370049765194790293447585103787852101517688940241033969...
		

Crossrefs

Cf. A003881 (Pi/4), A072172, A105534 (arctan 1/239).

Programs

  • Mathematica
    RealDigits[ArcTan[1/5], 10, 100][[1]] (* Amiram Eldar, Aug 04 2020 *)
  • PARI
    atan(1/5) \\ Michel Marcus, Sep 24 2014

Formula

4*arctan(1/5) - A105534 = Pi/4 (Machin's formula).
From Amiram Eldar, Aug 04 2020: (Start)
Equals Sum_{k>=0} (-1)^k/((2*k+1) * 5^(2*k+1)) = Sum_{k>=0} (-1)^k/A072172(k).
Equals Sum_{k>=1} arctan(1/(2*(k+2)^2)). (End)

Extensions

Corrected position of decimal point in example. - R. J. Mathar, Feb 05 2009
Previous Showing 61-70 of 107 results. Next