cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 67 results. Next

A210983 Total number of pairs of states of the first n subshells of the nuclear shell model in which the subshells are ordered by energy level in increasing order.

Original entry on oeis.org

1, 3, 4, 7, 8, 10, 14, 16, 17, 20, 25, 28, 29, 31, 35, 41, 45, 47, 48, 51, 56, 63, 68, 71, 72, 74, 78, 84, 92, 98, 102, 104, 105, 108, 113, 120, 129, 136, 141, 144, 145, 147, 151, 157, 165, 175, 183, 189, 193, 195, 196, 199, 204, 211, 220, 231
Offset: 1

Views

Author

Omar E. Pol, Jul 14 2012

Keywords

Comments

Additional comments from Omar E. Pol, Sep 02 2012: (Start)
Q: What are energy levels?
A: See the link sections of A212122, A213362, A213372. For example, see this link related to A213372: http://www.flickr.com/photos/mitopencourseware/3772864128/in/set-72157621892931990
Q: What defines the order in A212121?
A: The order of A212121 is defined by A212122.
Note that there are at least five versions of the nuclear shell model in the OEIS:
Goeppert-Mayer (1950): A212012, A004736, A212013, A212014.
Goeppert-Mayer, Jensen (1955): A212122, A212121, A212123, A212124.
Talmi (1993): A213362, A213361, A213363, A213364.
For another version: A162630, A130517, A210983, A210984.
Each version is represented by four sequences: the first sequence is the main entry.
(End)
For additional information see A162630.

Examples

			Example 1: written as a triangle in which row i is related to the (i-1)st level of nucleus, the sequence begins:
1;
3,     4;
7,     8,  10;
14,   16,  17,  20;
25,   28,  29,  31,  35;
41,   45,  47,  48,  51,  56;
63,   68,  71,  72,  74,  78,  84;
92,   98, 102, 104, 105, 108, 113, 120;
129, 136, 141, 144, 145, 147, 151, 157, 165;
175, 183, 189, 193, 195, 196, 199, 204, 211, 220;
...
Column 1 gives positive terms of A004006. Right border gives positives terms of A000292.
Example 2: written as an irregular triangle in which row j is related to the j-th shell of nucleus. Note that in this case row 4 has only one term. Triangle begins:
1;
3,     4;
7,     8,  10;
14;
16,   17,  20,  25;
28,   29,  31,  35,  41;
45,   47,  48,  51,  56,  63;
68,   71,  72,  74,  78,  84,  92;
98,  102, 104, 105, 108, 113, 120, 129;
136, 141, 144, 145, 147, 151, 157, 165, 175;
183, 189, 193, 195, 196, 199, 204, 211, 220, 231;
...
		

Crossrefs

Partial sums of A130517 (when that sequence is regarded as a flattened triangle). Other versions are A212013, A212123, A213363, A213373.

Formula

a(n) = A210984(n)/2.

A011826 f-vectors for simplicial complexes of dimension at most 1 (graphs) on at most n-1 vertices.

Original entry on oeis.org

2, 3, 5, 9, 16, 27, 43, 65, 94, 131, 177, 233, 300, 379, 471, 577, 698, 835, 989, 1161, 1352, 1563, 1795, 2049, 2326, 2627, 2953, 3305, 3684, 4091, 4527, 4993, 5490, 6019, 6581, 7177, 7808, 8475, 9179, 9921, 10702, 11523, 12385, 13289
Offset: 1

Views

Author

Svante Linusson (linusson(AT)math.kth.se)

Keywords

Crossrefs

Programs

Formula

a(n) = (n^3 - 3n^2 + 8n + 6)/6 fits all listed terms. - John W. Layman, Mar 13 1999
Empirical G.f.: -x*(x^3 - 5*x^2 + 5*x - 2) / (x - 1)^4. - Colin Barker, Sep 19 2012

A057703 a(n) = n*(94 + 5*n + 25*n^2 - 5*n^3 + n^4)/120.

Original entry on oeis.org

0, 1, 3, 7, 15, 31, 62, 119, 218, 381, 637, 1023, 1585, 2379, 3472, 4943, 6884, 9401, 12615, 16663, 21699, 27895, 35442, 44551, 55454, 68405, 83681, 101583, 122437, 146595, 174436, 206367, 242824, 284273, 331211, 384167, 443703, 510415, 584934, 667927
Offset: 0

Views

Author

Leonid Broukhis, Oct 24 2000

Keywords

Comments

Previous name was: This sequence is the result of the question: If you have a tall building and 5 plates and you need to find the highest story from which a plate thrown does not break, what is the number of stories you can handle given n tries?
Number of compositions with at most five parts and sum at most n. - Beimar Naranjo, Mar 12 2024

Crossrefs

Cf. A004006.
Differences form A055795 + 1 = A000127.

Programs

  • GAP
    List([0..40], n-> n*(94+5*n+25*n^2-5*n^3+n^4)/120); # G. C. Greubel, Jun 05 2019
  • Magma
    [n*(94+5*n+25*n^2-5*n^3+n^4)/120: n in [0..40]]; // G. C. Greubel, Jun 05 2019
    
  • Maple
    seq(sum(binomial(n,k),k=1..5),n=0..38); # Zerinvary Lajos, Dec 13 2007
  • Mathematica
    LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 1, 3, 7, 15, 31}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2012 *)
  • PARI
    vector(40, n, n--; n*(94+5*n+25*n^2-5*n^3+n^4)/120) \\ G. C. Greubel, Jun 05 2019
    
  • Sage
    [n*(94+5*n+25*n^2-5*n^3+n^4)/120 for n in (0..40)] # G. C. Greubel, Jun 05 2019
    

Formula

a(n) = n*(94 + 5*n + 25*n^2 - 5*n^3 + n^4)/120.
a(n) = Sum_{j=1..5} binomial(n, j). - Labos Elemer
G.f.: x*(1 - 3*x + 4*x^2 - 2*x^3 + x^4)/(1-x)^6. - Colin Barker, Apr 15 2012
E.g.f.: x*(120 + 60*x + 20*x^2 + 5*x^3 + x^4)*exp(x)/120. - G. C. Greubel, Jun 05 2019

Extensions

More terms and formula from James Sellers, Oct 25 2000
Name changed by G. C. Greubel, Jun 06 2019

A185506 Accumulation array, T, of the natural number array A000027, by antidiagonals.

Original entry on oeis.org

1, 3, 4, 7, 11, 10, 14, 23, 26, 20, 25, 42, 51, 50, 35, 41, 70, 88, 94, 85, 56, 63, 109, 140, 156, 155, 133, 84, 92, 161, 210, 240, 250, 237, 196, 120, 129, 228, 301, 350, 375, 374, 343, 276, 165, 175, 312, 416, 490, 535, 550, 532, 476, 375, 220, 231, 415, 558, 664, 735, 771, 770, 728, 639, 495, 286
Offset: 1

Views

Author

Clark Kimberling, Jan 29 2011

Keywords

Comments

Suppose that R={R(n,k) : n>=1, k>=1} is a rectangular array. The accumulation array of R is given by T(n,k) = Sum_{R(i,j): 1<=i<=n, 1<=j<=k}. (See A144112.)
The formula for the integer T(n,k) has denominator 12. The 2nd, 3rd, and 4th accumulation arrays of A000027 have formulas in which the denominators are 144, 2880, and 86400, respectively; see A185507, A185508, and A185509.

Examples

			The natural number array A000027 starts with
  1, 2,  4,  7, ...
  3, 5,  8, 12, ...
  6, 9, 13, 18, ...
  ...
T(n,k) is the sum of numbers in the rectangle with corners at (1,1) and (n,k) of A000027, so that a corner of T is as follows:
   1,  3,   7,  14,  25,  41
   4, 11,  23,  42,  70, 109
  10, 26,  51,  88, 140, 210
  20, 50,  94, 156, 240, 350
  35, 85, 155, 250, 375, 535
		

Crossrefs

Cf. A004006 (row 1), A000292 (col 1), A051925 (col 2), A185505 (1st diagonal).

Programs

  • Mathematica
    f[n_,k_]:=k*n*(2n^2+3(k+1)*n+2k^2-3k+5)/12;
    TableForm[Table[f[n,k],{n,1,10},{k,1,15}]]
    Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten

Formula

T(n,k) = k*n*(2*n^2 + 3*(k+1)*n + 2*k^2 - 3*k + 5)/12.

A051576 Order of Burnside group B(3,n) of exponent 3 and rank n.

Original entry on oeis.org

1, 3, 27, 2187, 4782969, 847288609443, 36472996377170786403, 1144561273430837494885949696427, 78551672112789411833022577315290546060373041, 35370553733215749514562618584237555997034634776827523327290883
Offset: 0

Views

Author

Keywords

Comments

The Burnside group of exponent e and rank r is B(e,r) := F_r / N where F_r is the free group generated by x_1, ..., x_r and N is the normal subgroup generated by all z^e with z in F_r. The Burnside problem is to determine when B(e,r) is finite. [Warning: Some authors interchange the order of e and r. But the symbol is not symmetric. B(i,j) != B(j,i). - N. J. A. Sloane, Jan 12 2016]
B(1,r), B(2,r), B(3,r), B(4,r) and B(6,r) are all finite: |B(1,r)| = 1, |B(2,r)| = 2^r, |B(3,r)| = A051576, |B(4,r)| = A079682, |B(6,r)| = A079683. |B(5,2)| = 5^34.
Many cases are known where B(e,r) is infinite (see references). Ivanov showed in 1994 that B(e,r) is infinite if r>1, e >= 2^48 and 2^9 divides e if e is even.
It is not known whether B(5,2) is finite or infinite.

References

  • Burnside, William. "On an unsettled question in the theory of discontinuous groups." Quart. J. Pure Appl. Math 33.2 (1902): 230-238.
  • M. Hall, Jr., The Theory of Groups, Macmillan, 1959, Chap. 18.
  • Havas, G. and Newman, M. F. "Application of Computers to Questions Like Those of Burnside." In Burnside Groups. Proceedings of a Workshop held at the University of Bielefeld, Bielefeld, June-July 1977. New York: Springer-Verlag, pp. 211-230, 1980.
  • Ivanov, Sergei V. "The free Burnside groups of sufficiently large exponents." International Journal of Algebra and Computation 4.01n02 (1994): 1-308. See Math. Rev. MR 1283947.
  • W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory, Wiley, 1966, see p. 380.
  • Novikov, P. S. and Adjan, S. I. "Infinite Periodic Groups I, II, III." Izv. Akad. Nauk SSSR Ser. Mat. 32, 212-244, 251-524, and 709-731, 1968.

Crossrefs

Equals 3^A004006(n).

Programs

Formula

a(n) = 3^(n*(n^2+5)/6) for n >= 0.

Extensions

Entry revised by N. J. A. Sloane, Jan 12 2016 and Jan 15 2016

A079682 Order of Burnside group B(4,n) of exponent 4 and rank n.

Original entry on oeis.org

1, 4, 4096, 590295810358705651712
Offset: 0

Views

Author

N. J. A. Sloane, Jan 31 2003

Keywords

Comments

The Burnside group of exponent e and rank r is B(e,r) := F_r / N where F_r is the free group generated by x_1, ..., x_r and N is the normal subgroup generated by all z^e with z in F_r. The Burnside problem is to determine when B(e,r) is finite. [Warning: Some authors interchange the order of e and r. But the symbol is not symmetric. B(i,j) != B(j,i). - N. J. A. Sloane, Jan 12 2016]
B(1,r), B(2,r), B(3,r), B(4,r) and B(6,r) are all finite: |B(1,r)| = 1, |B(2,r)| = 2^r, |B(3,r)| = A051576, |B(4,r)| = A079682, |B(6,r)| = A079683. |B(5,2)| = 5^34.
Many cases are known where B(e,r) is infinite (see references). Ivanov showed in 1994 that B(e,r) is infinite if r>1, e >= 2^48 and 2^9 divides e if e is even.
It is not known whether B(5,2) is finite or infinite.
See A051576 for additional references.

References

  • Bayes, A. J.; Kautsky, J.; and Wamsley, J. W. "Computation in Nilpotent Groups (Application)." In Proceedings of the Second International Conference on the Theory of Groups. Held at the Australian National University, Canberra, August 13-24, 1973(Ed. M. F. Newman). New York: Springer-Verlag, pp. 82-89, 1974.
  • Burnside, William. "On an unsettled question in the theory of discontinuous groups." Quart. J. Pure Appl. Math 33.2 (1902): 230-238.
  • M. Hall, Jr., The Theory of Groups, Macmillan, 1959, Chap. 18.
  • Havas, G. and Newman, M. F. "Application of Computers to Questions Like Those of Burnside." In Burnside Groups. Proceedings of a Workshop held at the University of Bielefeld, Bielefeld, June-July 1977. New York: Springer-Verlag, pp. 211-230, 1980.
  • W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory, Wiley, 1966, see p. 380.
  • Tobin, J. J. On Groups with Exponent 4. Thesis. Manchester, England: University of Manchester, 1954.

Crossrefs

Formula

The first few terms are 2 to the powers 0, 2, 12, 69, 422, 2728, that is, 2^A116398(n).

Extensions

Entry revised by N. J. A. Sloane, Jan 12 2016 and Jan 15 2016

A123736 Triangle T(n,k) = Sum_{j=0..k/2} binomial(n-j-1,k-2*j), read by rows.

Original entry on oeis.org

1, 0, 1, 1, 1, 0, 1, 2, 2, 1, 1, 0, 1, 3, 4, 3, 2, 1, 1, 0, 1, 4, 7, 7, 5, 3, 2, 1, 1, 0, 1, 5, 11, 14, 12, 8, 5, 3, 2, 1, 1, 0, 1, 6, 16, 25, 26, 20, 13, 8, 5, 3, 2, 1, 1, 0, 1, 7, 22, 41, 51, 46, 33, 21, 13, 8, 5, 3, 2, 1, 1, 0, 1, 8, 29, 63, 92, 97, 79, 54, 34, 21, 13, 8, 5, 3, 2, 1, 1, 0, 1
Offset: 1

Views

Author

Roger L. Bagula, Nov 14 2006

Keywords

Comments

Row sums give: A000225

Examples

			The triangle starts in row n=1 with columns 0 <= k < 2*n:
  1, 0;
  1, 1,  1,  0;
  1, 2,  2,  1,  1,  0;
  1, 3,  4,  3,  2,  1,  1,  0;
  1, 4,  7,  7,  5,  3,  2,  1,  1,  0;
  1, 5, 11, 14, 12,  8,  5,  3,  2,  1,  1, 0;
  1, 6, 16, 25, 26, 20, 13,  8,  5,  3,  2, 1, 1, 0;
  1, 7, 22, 41, 51, 46, 33, 21, 13,  8,  5, 3, 2, 1, 1, 0;
  1, 8, 29, 63, 92, 97, 79, 54, 34, 21, 13, 8, 5, 3, 2, 1, 1, 0;
		

Crossrefs

Cf. A136431 (antidiagonals), A027926 (row-reversed), A004006 (column m=3)

Programs

  • GAP
    Flat(List([1..10], n-> List([0..2*n-1], k-> Sum([0..Int(k/2)], j-> Binomial(n-j-1, k-2*j) )))); # G. C. Greubel, Sep 05 2019
  • Magma
    [&+[Binomial(n-j-1, k-2*j): j in [0..Floor(k/2)]]: k in [0..2*n-1], n in [1..10]]; // G. C. Greubel, Sep 05 2019
    
  • Maple
    seq(seq(sum(binomial(n-j-1, k-2*j), j=0..floor(k/2)), k=0..2*n-1), n=1..10); # G. C. Greubel, Sep 05 2019
  • Mathematica
    Table[Sum[Binomial[n-j-1, k-2*j], {j,0,Floor[k/2]}], {n, 10}, {k, 0, 2*n-1}]//Flatten (* modified by G. C. Greubel, Sep 05 2019 *)
  • PARI
    T(n,k) = sum(j=0, k\2, binomial(n-j-1, k-2*j));
    for(n=1,10, for(k=0,2*n-1, print1(T(n,k), ", "))) \\ G. C. Greubel, Sep 05 2019
    
  • Sage
    [[sum(binomial(n-j-1, k-2*j) for j in (0..floor(k/2))) for k in (0..2*n-1)] for n in (1..10)] # G. C. Greubel, Sep 05 2019
    

A175287 Partial sums of ceiling(n^2/4).

Original entry on oeis.org

0, 1, 2, 5, 9, 16, 25, 38, 54, 75, 100, 131, 167, 210, 259, 316, 380, 453, 534, 625, 725, 836, 957, 1090, 1234, 1391, 1560, 1743, 1939, 2150, 2375, 2616, 2872, 3145, 3434, 3741, 4065, 4408, 4769, 5150, 5550, 5971, 6412, 6875, 7359, 7866, 8395, 8948, 9524, 10125, 10750
Offset: 0

Views

Author

Mircea Merca, Dec 03 2010

Keywords

Comments

a(n) is the number of 1243-avoiding odd Grassmannian permutations of size n+1. Avoiding any of the patterns 2134, 2341, or 4123, gives the same sequence. - Juan B. Gil, Mar 09 2023
Conjecture: a(n) is the number of perimeter-magic (hollow) triangles of order 3 with magic sum n+2. Order 3 means each of the 3 edges has 3 elements >=1; the triangle has 6 elements. The elements do not need to be distinct, and triangles obtained by rotations are counted only once. The triangle (read ccw) for magic sum 3 has elements 1 1 1 1 1 1. The 2 triangles with magic sum 4 are 1 1 2 1 1 2 and 1 2 1 2 1 2. - R. J. Mathar, Mar 08 2025

Examples

			a(4) = ceil(0/4)+ceil(1/4)+ceil(4/4)+ceil(9/4)+ceil(16/4) = 0+1+1+3+4=9.
		

Crossrefs

Partial sums of A004652.
Cf. A361272.

Programs

  • Magma
    [Floor((n+1)*(2*n^2+n+9)/24): n in [0..60]]; // Vincenzo Librandi, Jun 22 2011
    
  • Maple
    a:= n-> round((2*n^(3)+3*n^(2)+10*n)/24): seq(a(n), n=0..20);
  • Mathematica
    Table[Sum[Ceiling[i^2/4], {i, 0, n}], {n, 0, 49}] (* or *) Table[(2n(2n^2 + 3n + 10) -9(-1)^n + 9)/48, {n, 0, 49}] (* Alonso del Arte, Dec 03 2010 *)
    CoefficientList[Series[(x^3 - x^2 + x)/(x^5 - 3 x^4 + 2 x^3 + 2 x^2 - 3 x + 1), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 26 2014 *)
    Accumulate[Ceiling[Range[0,50]^2/4]] (* or *) LinearRecurrence[{3,-2,-2,3,-1},{0,1,2,5,9},60] (* Harvey P. Dale, Nov 19 2014 *)
  • PARI
    x='x+O('x^99); concat(0, Vec((x^3-x^2+x)/ (x^5-3*x^4+2*x^3+2*x^2-3*x+1))) \\ Altug Alkan, Apr 05 2016

Formula

a(n) = round((2*n+1)*(2*n^2+2*n+9)/48).
a(n) = floor((n+1)*(2*n^2+n+9)/24).
a(n) = ceiling((2*n^3+3*n^2+10*n)/24).
a(n) = round((2*n^3+3*n^2+10*n)/24).
a(n) = a(n-4)+n^2-3*n+5 , n>3.
G.f.: x*(1-x+x^2) / ( (1+x)*(x-1)^4 ).
a(n) = (2*n*(2*n^2+3*n+10)-9*(-1)^n+9)/48. - Bruno Berselli, Dec 03 2010
a(n)+a(n+1) = A004006(n+1). - R. J. Mathar, Mar 08 2025

A341091 Triangle read by rows: Coefficients for calculation of the sum of all the finite differences from order zero to order k. Sum_{n=0..k} T(n, k)*b(n) = b(0) + b(1) + ... + b(k) + (b(1) - b(0)) + ... + (b(k) - b(k-1)) + ((b(2) - b(1)) - (b(1) - b(0))) + ... .

Original entry on oeis.org

1, 0, 2, 1, -1, 3, 0, 3, -3, 4, 1, -2, 7, -6, 5, 0, 4, -8, 14, -10, 6, 1, -3, 13, -21, 25, -15, 7, 0, 5, -15, 35, -45, 41, -21, 8, 1, -4, 21, -49, 81, -85, 63, -28, 9, 0, 6, -24, 71, -129, 167, -147, 92, -36, 10, 1, -5, 31, -94, 201, -295, 315, -238, 129, -45, 11
Offset: 0

Views

Author

Thomas Scheuerle, Feb 13 2022

Keywords

Comments

If we want to calculate the sum of finite differences for a sequence b(n):
b(0)*T(0, n) + ... + b(n)*T(n, n) = b(0) + b(1) + ... + b(n) + (b(1) - b(0)) + ... + (b(n) - b(n-1)) + ((b(2) - b(1)) - (b(1) - b(0))) + ... This sum includes the sequence b(n) itself. This defines an invertible linear sequence transformation with a deep connection to Bernoulli numbers and other interesting sequences of rational numbers.
From Thomas Scheuerle, Apr 29 2024: (Start)
These are the coefficients of the polynomials defined by the recurrence: P(k, x) = P(k - 1, x) + (x^2 - x)*P(k - 2, x) + 1, with P(-1, x) = 0 and P(0, x) = 1. This can also be expressed as P(k, x) = Sum_{m=1..k+1} binomial(k+2 - m, m)*(x^2 - x)^(m - 1) = Sum_{n=0..k} T(n, k)*x^(k-n). If we would evaluate P(k, t) as sequence for some fixed t then we get the expansion of 1/((1 - x)*(1+(t-1)*x)*(1 - t*x)).
We may replace (x^2 - x) by (x^(-2) - x^(-1)) to get the coefficients in reverse order: x^k*Sum_{m=1..k+1} binomial(k+2 - m, m)*(x^(-2) - x^(-1))^(m - 1) = Sum_{n=0..k} T(n, k)*x^n = F(k, x). If we would evaluate F(k, t) as sequence for some fixed t then we get the expansion of 1/((1 - x)*(1 - (t-1)*x)*(1 - t*x)). (End)

Examples

			Triangle begins with T(n, k):
   n=   0,  1,   2,   3,   4,   5,   6,   7,   8
  k=0   1
  k=1   0,  2
  k=2   1, -1,   3
  k=3   0,  3,  -3,   4
  k=4   1, -2,   7,  -6,   5
  k=5   0,  4,  -8,  14, -10,   6
  k=6   1, -3,  13, -21,  25, -15,   7
  k=7   0,  5, -15,  35, -45,  41, -21,   8
  k=8   1, -4,  21, -49,  81, -85,  63, -28,   9
  ...
		

Crossrefs

Cf. A027642, A164555 (Numerators and denominators of Bernoulli numbers).
Cf. A001008, A002805 (Numerators and denominators of harmonic numbers).
Sequences below will be obtained by evaluation of the associated polynomials:

Programs

  • PARI
    A341091(n, k) = sum(m=n, k,(-1)^(m+n)*binomial(m+1, n))
    
  • PARI
    A341091(n, k) = (1/2)*(-1)^n*(2*(-1)^k*binomial(2+k, n)*hypergeom([1,k+3],k+3-n,-1)+(-1/2)^n*(2^(n+1)-1)) \\ Thomas Scheuerle, Apr 29 2024

Formula

b(0)*T(0, m) + b(1)*T(1, m) + ... + b(m)*T(m, m)
= Sum_{j=0..m} Sum_{n=0..m-j} Sum_{k=0..n} (-1)^k*binomial(n, k)*b(j+n-k)
= Sum_{n=0..m} b(n)*Sum_{j=n..m}(-1)^(j+n)*binomial(j+1, n).
T(n, k) = Sum_{m=n..k}(-1)^(m+n)*binomial(m+1, n).
T(n, k) = (1/2)*(-1)^n*(2*(-1)^k*binomial(2+k, n)*Hypergeometric2F1(1, k+3, k+3-n, -1)+(-1/2)^n*(2^(n+1) - 1)), where Hypergeometric2F1 is the Gaussian hypergeometric function 2F1 as defined in Mathematica. - Thomas Scheuerle, Apr 29 2024
T(k, k) = A000027(k+1) The positive integers.
|T(k-1, k)| = A000217(k) The triangular numbers.
T(k-2, k) = A004006(k).
|T(k-3, k)| = A051744(k).
T(0, k*2) = 1.
T(0, k*2 + 1) = 0.
T(1, k*2 + 1) = k + 2.
T(1, k*2 + 2) = -(k + 1).
T(n, k) with constant n and variable k, a linear recurrence relation with characteristic polynomial (x-1)*(x+1)^(n+1).
Sum_{n=0..k} T(n, k)*B_n = 1. B_n is the n-th Bernoulli number with B_1 = 1/2. B_n = A164555(n)/A027642(n).
Sum_{n=0..k} T(n, k)*(1 - B_n) = k.
Sum_{n=0..k} T(n, k)*(2*n - 3+3*B_n) = k^2.
Sum_{n=0..k} T(n, k)*A032346(n) = A032346(k+1).
From Thomas Scheuerle, Apr 29 2024: (Start)
Sum_{n=0..k} T(n, k)*A000110(n+1) = A000110(k+2) - 1.
Sum_{n=0..k} T(n, k)*(1/(1+n)) = H(1+floor(k/2)), where H(k) is the harmonic number A001008(k)/A002805(k). (End)
Sum_{n=0..k} T(n, k)*c(n) = c(k). C(k) = {-1, 0, 1/2, 1/2, 1/8, -7/20, ...} this sequence of rational numbers can be defined recursively: c(0) = -1, c(m) = (-c(m-1) + Sum_{k=0..m-1} A130595(m+1, k)*c(k))/m.
c(m) is an eigensequence of this transformation, all eigensequences are c(m) multiplied by any factor.
Sum_{n=0..k} T(n, k)*A000045(n) = 2*(A000045(2*floor((k+1)/2) - 1) - 1). A000045 are the Fibonacci numbers.
Sum_{n=0..k} T(n, k)*A000032(n) = A000032(2*floor(k/2)+2) - 2. A000032 are the Lucas numbers.
Sum_{n=0..k} T(n, k)*A001045(n) = A145766(floor((k+1)/2)). A001045 is the Jacobsthal sequence.
This sequence acting as an operator onto a monomial n^w:
Sum_{n=0..k} T(n, k)*n^w = (1/(w+1))*k^(w+1) + Sum_{v=1..w} ((v+B_v)*(w)_v/v!)*k^(w+1-v) - A052875(w) + O_k(w) (w)_v is the falling factorial. If k > w-1 then O_k(w) = 0. If k <= w-1 then O_k(w) is A084416(w, 2+k), the sequence with the exponential generating function: (e^x-1)^(2+k)/(2-e^x).
From Thomas Scheuerle, Apr 29 2024: (Start)
This sequence acting by its inverse operator onto a monomial k^w:
Sum_{n=0..k} T(n, k)*( Sum_{m=0..k} ((-1)^(1+m+k)*binomial(k, m)*(2^(k-m) - 1)*n^m + A344037(m)*B_n) ) = k^w - A372245(w, k+3), note that A372245(w, k+3) = 0 if k+3 > w. B_n is the n-th Bernoulli number with B_1 = 1/2.
How this sequence will act as an operator onto a Dirichlet series may be developed by the formulas below:
Sum_{n=0..k} T(n, k)*2^n = A000295(k+2).
Sum_{n=0..k} T(n, k)*3^n = A000392(k+3).
Sum_{n=0..k} T(n, k)*4^n = A016208(k).
Sum_{n=0..k} T(n, k)*5^n = A016218(k).
Sum_{n=0..k} T(n, k)*6^n = A016228(k).
Sum_{n=0..k} T(n, k)*7^n = A016241(k).
Sum_{n=0..k} T(n, k)*8^n = A016249(k).
Sum_{n=0..k} T(n, k)*9^n = A016256(k).
Sum_{n=0..k} T(n, k)*10^n = A016261(k).
Sum_{n=0..k} T(n, k)*m^n = m^2*m^k/(m-1) - (m-1)^2*(m-1)^k/(m-2) + 1/((m-1)*(m-2)), for m > 2.
Sum_{n=0..k} T(n, k)*( m*B_n + (m-1)*Sum_{t=1..m} t^n )*(1/m^2) = m^k, for m > 0. B_n is the n-th Bernoulli number with B_1 = 1/2.
Sum_{n=0..k} T(n, k) zeta(-n) = Sum_{j=0..k} (-1)^(1+j)/(2+j) = (-1)^(k+1)*LerchPhi(-1, 1, k+3) - 1 + log(2).
Sum_{n=0..k} T(k - n, k)*2^n = A000975(k+1)
Sum_{n=0..k} T(k - n, k)*3^n = A091002(k+2)
Sum_{n=0..k} T(k - n, k)*4^n = A249997(k). (End)

A079683 Order of Burnside group B(6,n) of exponent 6 and rank n.

Original entry on oeis.org

1, 6, 227442304239437611008
Offset: 0

Views

Author

N. J. A. Sloane, Jan 31 2003

Keywords

Comments

The Burnside group of exponent e and rank r is B(e,r) := F_r / N where F_r is the free group generated by x_1, ..., x_r and N is the normal subgroup generated by all z^e with z in F_r. The Burnside problem is to determine when B(e,r) is finite. [Warning: Some authors interchange the order of e and r. But the symbol is not symmetric. B(i,j) != B(j,i). - N. J. A. Sloane, Jan 12 2016]
B(1,r), B(2,r), B(3,r), B(4,r) and B(6,r) are all finite: |B(1,r)| = 1, |B(2,r)| = 2^r, |B(3,r)| = A051576, |B(4,r)| = A079682, |B(6,r)| = A079683. |B(5,2)| = 5^34.
Many cases are known where B(e,r) is infinite (see references). Ivanov showed in 1994 that B(e,r) is infinite if r>1, e >= 2^48 and 2^9 divides e if e is even.
It is not known whether B(5,2) is finite or infinite.
The next term, a(3), is 2^4375*3^833. - N. J. A. Sloane, Jan 12 2016
See A051576 for additional references.

References

  • M. Hall, Jr., The Theory of Groups, Macmillan, 1959, Chap. 18.
  • W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory, Wiley, 1966, see p. 380.

Crossrefs

Programs

  • Maple
    B6n:=proc(n) local a,b,c;
    b:=1+(n-1)*2^n;
    c:=n+binomial(n,2)+binomial(n,3);
    a:=1+(n-1)*3^c;
    2^a*3^(b+binomial(b,2)+binomial(b,3));
    end; # N. J. A. Sloane, Jan 12 2016

Formula

The formula for a(n) was found by Marshall Hall, Jr.: a(n) = 2^i 3^(j + (j choose 2) + (j choose 3)) where i = 1 + (n-1)3^(n + (n choose 2) + (n choose 3)) and j = 1 + (n-1)2^n. (See also the Maple code.)

Extensions

Entry revised by N. J. A. Sloane, Jan 12 2016 and Jan 15 2016
Previous Showing 31-40 of 67 results. Next