cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A276623 The infinite trunk of ternary beanstalk: The only infinite sequence such that a(n-1) = a(n) - A053735(a(n)), where A053735(n) = base-3 digit sum of n.

Original entry on oeis.org

0, 2, 4, 8, 10, 12, 16, 20, 26, 28, 30, 34, 38, 42, 46, 52, 56, 62, 68, 72, 80, 82, 84, 88, 92, 96, 100, 106, 110, 116, 122, 126, 134, 140, 144, 152, 160, 164, 170, 176, 180, 188, 194, 198, 204, 212, 216, 224, 232, 242, 244, 246, 250, 254, 258, 262, 268, 272, 278, 284, 288, 296, 302, 306, 314, 322, 326, 332, 338, 342, 350, 356, 360
Offset: 0

Views

Author

Antti Karttunen, Sep 11 2016

Keywords

Crossrefs

Cf. A004128, A024023, A053735, A054861, A261231 (left inverse), A261233, A276622, A276624, A276603 (terms divided by 2), A276604 (first differences).
Cf. A179016, A219648, A219666, A255056, A259934, A276573, A276583, A276613 for similar constructions.
Cf. also A263273.

Programs

Formula

a(n) = A276624(A276622(n)).
Other identities. For all n >= 0:
A261231(a(n)) = n.
a(A261233(n)) = A024023(n) = 3^n - 1.

A004117 Numerators of expansion of (1-x)^(-1/3).

Original entry on oeis.org

1, 1, 2, 14, 35, 91, 728, 1976, 5434, 135850, 380380, 1071980, 9111830, 25933670, 74096200, 637227320, 1832028545, 5280552865, 137294374490, 397431084050, 1152550143745, 10043651252635, 29217894553120, 85112997176480
Offset: 0

Views

Author

Keywords

Comments

For n >= 1, a(n) is also the numerator of beta(n+1/3,2/3)*sqrt(27)/(2*Pi). - Groux Roland, May 17 2011

Crossrefs

Programs

  • Mathematica
    Table[Numerator[Binomial[-1/3,n] (-1)^n],{n,0,40}] (* Vincenzo Librandi, Jun 13 2012 *)
  • PARI
    a(n)=prod(k=1,n,3*k-2)/n!*3^sum(k=1,n,valuation(k,3))

Formula

(1/n!) * 3^A054861(n) * Product_{k=0..n-1} (3k+1). - Ralf Stephan, Mar 13 2004
Numerators in (1-3t)^(-1/3) = 1 + t + 2*t^2 + (14/3)*t^3 + (35/3)*t^4 + (91/3)*t^5 + (728/9)*t^6 + (1976/9)*t^7 + (5434/9)*t^8 + ... = 1 + t + 4*t^2/2! + 28*t^3/3! + 280*t^4/4! + 3640*t^5/5! + 58240*t^6/6! + ... = e.g.f. for triple factorials A007559 (cf. A094638). - Tom Copeland, Dec 04 2013

Extensions

Typo in formula fixed by Pontus von Brömssen, Nov 25 2008

A268678 Distinct values in A268395; partial sums of A268679.

Original entry on oeis.org

0, 1, 3, 4, 5, 7, 8, 11, 15, 16, 18, 19, 20, 22, 23, 26, 27, 31, 32, 34, 36, 37, 40, 41, 42, 47, 48, 50, 52, 53, 56, 57, 59, 60, 64, 65, 66, 69, 70, 72, 74, 75, 81, 82, 83, 86, 87, 89, 90, 92, 93, 98, 101, 102, 104, 105, 106, 108, 109, 113, 116, 117, 119, 120, 121, 123, 124, 127, 131, 132, 134, 135, 136, 138, 139, 142
Offset: 0

Views

Author

Antti Karttunen, Feb 10 2016

Keywords

Crossrefs

Cf. A268677 (complement).
Cf. A268680 (least monotonic left inverse).
Cf. A268712.
Cf. also A004128.

Programs

  • Mathematica
    f[n_] := Which[n == 1, 0, OddQ@ #, 0, EvenQ@ #, 1 + f[#/2]] &@ Fold[BitXor, n, Quotient[n, 2^Range[BitLength@ n - 1]]]; Union@ Accumulate@ Array[f, {150}] (* Michael De Vlieger, Feb 12 2016, after Jan Mangaldan at A006068 *)

Formula

a(0) = 0, for n >= 1, a(n) = A268679(n) + a(n-1).
a(n) = A268395(A001969(1+n)).
Other identities. For all n >= 0:
A268680(a(n)) = n.

A061160 Numerators in expansion of Euler transform of b(n) = 1/3.

Original entry on oeis.org

1, 1, 5, 50, 215, 646, 8711, 25475, 105925, 3091270, 11691247, 36809705, 445872155, 1364113925, 5085042010, 50975292560, 183383680088, 588817265695, 19512559194875, 62369303509475, 224877933068647, 2214198452392027, 7686538660149565, 25124342108522750
Offset: 0

Views

Author

Vladeta Jovovic, Apr 17 2001

Keywords

Comments

Denominators of c(n) are 3^d(n), where d(n)=power of 3 in (3*n)!, cf. A004128.

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(add(
          d/3, d=numtheory[divisors](j))*b(n-j), j=1..n)/n)
        end:
    a:= n-> numer(b(n)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jul 28 2017
  • Mathematica
    c[n_] := c[n] = If[n == 0, 1,
         (1/(3n)) Sum[c[n-k] DivisorSigma[1, k], {k, 1, n}]];
    a[n_] := Numerator[c[n]];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 24 2022 *)

Formula

Numerators of c(n), where c(n) = (1/(3*n))*Sum_{k=1..n} c(n-k)*sigma(k), n>0, c(0)=1.

A067623 Consider the power series (x+1)^(1/3)=1+x/3-x^2/9+5x^3/81+...; sequence gives denominators of coefficients.

Original entry on oeis.org

1, 3, 9, 81, 243, 729, 6561, 19683, 59049, 1594323, 4782969, 14348907, 129140163, 387420489, 1162261467, 10460353203, 31381059609, 94143178827, 2541865828329, 7625597484987, 22876792454961, 205891132094649, 617673396283947
Offset: 0

Views

Author

Benoit Cloitre, Feb 02 2002

Keywords

Comments

All terms are powers of 3.

Crossrefs

Cf. A004128, A046161, A067622 (numerators), A123854.

Programs

Formula

a(n) = 3^A004128(n).
a(n) = 3^n*a(floor(n/3)). - Vladeta Jovovic, Mar 01 2004
a(n) = denominator(binomial(1/3, n)). - Peter Luschny, Apr 07 2016

A344853 a(n) = n minus (sum of digits of n in base 3).

Original entry on oeis.org

0, 0, 0, 2, 2, 2, 4, 4, 4, 8, 8, 8, 10, 10, 10, 12, 12, 12, 16, 16, 16, 18, 18, 18, 20, 20, 20, 26, 26, 26, 28, 28, 28, 30, 30, 30, 34, 34, 34, 36, 36, 36, 38, 38, 38, 42, 42, 42, 44, 44, 44, 46, 46, 46, 52, 52, 52, 54, 54, 54, 56, 56, 56, 60, 60, 60, 62, 62, 62
Offset: 0

Views

Author

Thomas König, May 30 2021

Keywords

Comments

All terms are even.
In all sequences of the form f(n) = n minus (sum of digits of n in base b), every term appears b times consecutively. Here b = 3, hence terms are entries of A346502 repeated 3 times. - Bernard Schott, Jul 21 2021

Examples

			a(20) = 20 - (2 + 0 + 2) = 16 because 20 is written as 202 in base 3.
		

Crossrefs

Cf. A011371 (in base 2), A066568 (in base 10).

Programs

  • Mathematica
    a[n_] := n - Plus @@ IntegerDigits[n, 3]; Array[a, 70, 0] (* Amiram Eldar, May 30 2021 *)
  • PARI
    a(n) = n - sumdigits(n, 3); \\ Michel Marcus, Jul 11 2021

Formula

a(n) = n - A053735(n).
a(n) = 2 * A054861(n).
a(n) = 2 * A004128(floor(n/3)).
a(3*n) = a(3*n+1) = a(3*n+2).

A051066 Partial sums of A051065.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 16, 16, 17, 18, 18, 19, 20, 20, 21, 21, 22, 22, 22, 23, 23, 23, 24, 24, 24, 25, 25, 25, 26, 26, 26, 27, 27, 28, 28, 29, 30, 30, 31, 32, 32, 33, 33, 34, 34
Offset: 0

Views

Author

Keywords

References

  • Letter from Gary W. Adamson concerning Prouhet-Thue-Morse sequence, Nov. 11, 1999.

Crossrefs

Programs

  • Mathematica
    Accumulate[Join[{0}, Mod[Accumulate[Table[IntegerExponent[3*n, 3], {n, 1, 100}]], 2]]] (* Amiram Eldar, Jun 02 2025 *)

Formula

a(n) = Sum_{k=0..n} A051065(k). - Wesley Ivan Hurt, May 25 2024

Extensions

More terms from James Sellers, Dec 11 1999

A051067 A051066 read mod 2.

Original entry on oeis.org

0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1
Offset: 0

Views

Author

Keywords

References

  • Letter from Gary W. Adamson concerning Prouhet-Thue-Morse sequence, Nov. 11, 1999.

Crossrefs

Programs

  • Mathematica
    Mod[Accumulate[Join[{0}, Mod[Accumulate[Table[IntegerExponent[3*n, 3], {n, 1, 100}]], 2]]], 2] (* Amiram Eldar, Jun 02 2025 *)

Extensions

More terms from James Sellers, Dec 11 1999

A127427 a(n) = v_3( (6n)! ) - v_3( (3n)! ), where v_3(N) is the 3-adic valuation A007949(N).

Original entry on oeis.org

0, 1, 3, 4, 5, 8, 9, 10, 12, 13, 14, 16, 17, 18, 22, 23, 24, 26, 27, 28, 30, 31, 32, 35, 36, 37, 39, 40, 41, 43, 44, 45, 48, 49, 50, 52, 53, 54, 56, 57, 58, 63, 64, 65, 67, 68, 69, 71, 72, 73, 76, 77, 78, 80, 81, 82, 84, 85, 86, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103, 104, 105, 107
Offset: 0

Views

Author

N. J. A. Sloane, Apr 02 2007

Keywords

Crossrefs

Essentially partial sums of A127427.

Programs

  • Mathematica
    s[n_] := Plus @@ IntegerDigits[n, 3]; a[n_] := (3*n + s[3*n] - s[6*n])/2; Array[a, 100, 0] (* Amiram Eldar, Feb 21 2021 *)
  • PARI
    a(n) = valuation((6*n)!, 3) - valuation((3*n)!, 3); \\ Michel Marcus, Jul 29 2017

Formula

a(n) - n = a( [(n+1)/3] ).
a(n) = (3*n + A053735(n) - A053735(6*n))/2. - Amiram Eldar, Feb 21 2021

A381973 Numbers m such that Sum_{k >= 0} floor(m/3^k) is prime.

Original entry on oeis.org

2, 4, 9, 12, 14, 17, 22, 28, 36, 41, 42, 46, 49, 61, 66, 69, 71, 73, 86, 89, 94, 101, 102, 107, 110, 113, 121, 129, 131, 134, 143, 151, 153, 155, 158, 169, 173, 177, 181, 187, 190, 211, 214, 223, 227, 235, 238, 250, 254, 257, 274, 281, 282, 289, 295, 301
Offset: 1

Views

Author

Clark Kimberling, Apr 01 2025

Keywords

Comments

Includes 3^(k-1) for k in A028491. - Robert Israel, Apr 21 2025

Examples

			[9/1] + [9/3] + [9/9] = 13, where [ ] = floor, so 9 is in the sequence.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) add(floor(n/3^k),k=0..ilog[3](n)) end proc:
    select(m -> isprime(f(n)), [$2..1000]); # Robert Israel, Apr 21 2025
  • Mathematica
    f[n_] := Sum[Floor[n/3^k], {k, 0, Floor[Log[3, n]]}]  (* A004128 *)
    u = Select[Range[400], PrimeQ[f[#]] &]  (* A381973 *)
    Map[f, u]   (* A381974 *)
Previous Showing 11-20 of 24 results. Next