cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A000695 Moser-de Bruijn sequence: sums of distinct powers of 4.

Original entry on oeis.org

0, 1, 4, 5, 16, 17, 20, 21, 64, 65, 68, 69, 80, 81, 84, 85, 256, 257, 260, 261, 272, 273, 276, 277, 320, 321, 324, 325, 336, 337, 340, 341, 1024, 1025, 1028, 1029, 1040, 1041, 1044, 1045, 1088, 1089, 1092, 1093, 1104, 1105, 1108, 1109, 1280, 1281, 1284, 1285
Offset: 0

Views

Author

Keywords

Comments

Although this is a list, it has offset 0 for both historical and mathematical reasons.
Numbers whose set of base-4 digits is a subset of {0,1}. - Ray Chandler, Aug 03 2004, corrected by M. F. Hasler, Oct 16 2018
Numbers k such that the sum of the base-2 digits of k = sum of the base-4 digits of k. - Clark Kimberling
Numbers having the same representation in both binary and negabinary (A039724). - Eric W. Weisstein
This sequence has many other interesting and useful properties. Every term k corresponds to a unique pair i,j with k = a(i) + 2*a(j) (i=A059905(n), j=A059906(n)) -- see A126684. Every list of numbers L = [L1,L2,L3,...] can be encoded uniquely by "recursive binary interleaving", where f(L) = a(L1) + 2*a(f([L2,L3,...])) with f([])=0. - Marc LeBrun, Feb 07 2001
This may be described concisely using the "rebase" notation b[n]q, which means "replace b with q in the expansion of n", thus "rebasing" n from base b into base q. The present sequence is 2[n]4. Many interesting operations (e.g., 10[n](1/10) = digit reverse, shifted) are nicely expressible this way. Note that q[n]b is (roughly) inverse to b[n]q. It's also natural to generalize the idea of "basis" so as to cover the likes of F[n]2, the so-called "fibbinary" numbers (A003714) and provide standard ready-made images of entities obeying other arithmetics, say like GF2[n]2 (e.g., primes = A014580, squares = the present sequence, etc.). - Marc LeBrun, Mar 24 2005
a(n) is also equal to the product n X n formed using carryless binary multiplication (A059729, A063010). - Henry Bottomley, Jul 03 2001
Numbers k such that A004117(k) is odd. - Pontus von Brömssen, Nov 25 2008
Fixed point of the morphism: 0 -> 01; 1 -> 45; 2 -> 89; ...; n -> (4n)(4n+1), starting from a(0)=0. - Philippe Deléham, Oct 22 2011
If n is even and present, so is n+1. - Robert G. Wilson v, Oct 24 2014
Also: interleave binary digits of n with 0's. (Equivalent to the "rebase" interpretation above.) - M. F. Hasler, Oct 16 2018
Named after the Austrian-Canadian mathematician Leo Moser (1921-1970) and the Dutch mathematician Nicolaas Govert de Bruijn (1918-2012). - Amiram Eldar, Jun 19 2021
Conjecture: The sums of distinct powers of k > 2 can be constructed as the following (k-1)-ary rooted tree. For each n the tree grows and a(n) is then the total number of nodes. For n = 1, the root of the tree is added. For n > 1, if n is odd one leaf of depth n-2 grows one child. If n is even all leaves of depth >= (n - 1 - A000225(A001511(n/2))) grow the maximum number of children. An illustration is provided in the links. - John Tyler Rascoe, Oct 09 2022

Examples

			G.f.: x + 4*x^2 + 5*x^3 + 16*x^4 + 17*x^5 + 20*x^6 + 21*x^7 + 64*x^8 + ...
If n=27, then b_0=1, b_1=1, b_2=0, b_3=1, b_4=1. Therefore a(27) = 4^4 + 4^3 + 4 + 1 = 325; k = b_0 + b_2*2 + b_4*2^2 = 5, l = b_1 + b_3*2 = 3, such that a(5)=17, a(3)=5 and 27 = 17 + 2*5. - _Vladimir Shevelev_, Nov 10 2008
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

For generating functions Product_{k>=0} (1 + a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.
Main diagonal of A048720, second column of A048723.
A062880(n) = 2*a(n); A001196(n) = 3*a(n).
Row 4 of array A104257.

Programs

  • C
    uint32_t a_next(uint32_t a_n) { return (a_n + 0xaaaaaaab) & 0x55555555; } /* Falk Hüffner, Jan 24 2022 */
  • Haskell
    a000695 n = if n == 0 then 0 else 4 * a000695 n' + b
                where (n',b) = divMod n 2
    -- Reinhard Zumkeller, Feb 21 2014, Dec 03 2011
    
  • Julia
    function a(n)
        m, r, b = n, 0, 1
        while m > 0
            m, q = divrem(m, 2)
            r += b * q
            b *= 4
        end
    r end; [a(n) for n in 0:51] |> println # Peter Luschny, Jan 03 2021
    
  • Magma
    m:=60; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!( (&+[4^k*x^(2^k)/(1+x^(2^k)): k in [0..20]])/(1-x) )); // G. C. Greubel, Dec 06 2018
    
  • Maple
    a:= proc(n) local m, r, b; m, r, b:= n, 0, 1;
          while m>0 do r:= r+b*irem(m, 2, 'm'); b:= b*4 od; r
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Mar 16 2013
  • Mathematica
    Table[FromDigits[Riffle[IntegerDigits[n, 2], 0], 2], {n, 0, 51}] (* Jacob A. Siehler, Jun 30 2010 *)
    Table[FromDigits[IntegerDigits[n, 2], 4], {n, 0, 51}] (* IWABUCHI Yu(u)ki, Apr 06 2013 *)
    Union@ Flatten@ NestList[ Join[ 4#, 4# + 1] &, {0}, 6] (* Robert G. Wilson v, Aug 30 2014 *)
    Select[ Range[0, 1320], Total@ IntegerDigits[#, 2] == Total@ IntegerDigits[#, 4] &] (* Robert G. Wilson v, Oct 24 2014 *)
    Union[FromDigits[#,4]&/@Flatten[Table[Tuples[{0,1},n],{n,6}],1]] (* Harvey P. Dale, Oct 03 2015 *)
    a[ n_] := Which[n < 1, 0, EvenQ[n], a[n/2] 4, True, a[n - 1] + 1]; (* Michael Somos, Nov 30 2016 *)
  • PARI
    a(n)=n=binary(n);sum(i=1,#n,n[i]*4^(#n-i)) \\ Charles R Greathouse IV, Mar 04 2013
    
  • PARI
    {a(n) = if( n<1, 0, n%2, a(n-1) + 1, a(n/2) * 4)}; /* Michael Somos, Nov 30 2016 */
    
  • PARI
    A000695(n)=fromdigits(binary(n),4) \\ M. F. Hasler, Oct 16 2018
    
  • Python
    def a(n):
        n = bin(n)[2:]
        x = len(n)
        return sum(int(n[i]) * 4**(x - 1 - i) for i in range(x))
    [a(n) for n in range(101)] # Indranil Ghosh, Jun 25 2017
    
  • Python
    def a():
        x = 0
        while True:
            yield x
            y = ~(x << 1)
            x = (x - y) & y # Falk Hüffner, Dec 21 2021
    
  • Python
    from itertools import count, islice
    def A000695_gen(): # generator of terms
        yield (a:=0)
        for n in count(1):
            yield (a := a+((1<<((~n & n-1).bit_length()<<1)+1)+1)//3)
    A000695_list = list(islice(A000695_gen(),30)) # Chai Wah Wu, Feb 22 2023
    
  • Python
    def A000695(n): return int(bin(n)[2:],4) # Chai Wah Wu, Aug 21 2023
    
  • Sage
    s=(sum(4^k*x^(2^k)/(1+x^(2^k)) for k in range(10))/(1-x)).series(x, 60); s.coefficients(x, sparse=False) # G. C. Greubel, Dec 06 2018
    

Formula

G.f.: 1/(1-x) * Sum_{k>=0} 4^k*x^2^k/(1+x^2^k). - Ralf Stephan, Apr 27 2003
Numbers k such that the coefficient of x^k is > 0 in Product_{n>=0} 1+x^(4^n). - Benoit Cloitre, Jul 29 2003
For n >= 1, a(n) = a(n-1) + (4^t+2)/6, where t is such that 2^t||2n,or t=A007814(2n). a(n) = (A145812(n+1) - 1)/2. - Vladimir Shevelev, Nov 07 2008
To get a(n), write n as Sum b_j*2^j, then a(n) = Sum b_j*2^(2j). The Diophantine equation a(k)+2a(l)=n has the unique solution: k=Sum b_(2j)*2^j, l=Sum b_(2j+1)*2^j. - Vladimir Shevelev, Nov 10 2008
If a(k)*a(l)=a(m), then k*l=m (the inverse, generally speaking, is not true). - Vladimir Shevelev, Nov 21 2008
Let F(x) be the generating function, then F(x)*F(x^2) = 1/(1-x). - Joerg Arndt, May 12 2010
a(n+1) = (a(n) + 1/3) & -1/3, where & is bitwise AND, -1/3 is represented as the infinite dyadic ...010101 (just as -1 is ...111111 in two's complement) and +1/3 is ...101011. - Marc LeBrun, Sep 30 2010
a(n) = Sum_{k>=0} {A030308(n,k)*b(k)} with b(k) = 4^k = A000302(k). - Philippe Deléham, Oct 18 2011
A182560(6*a(n)) = 0. - Reinhard Zumkeller, May 05 2012
G.f.: x/(1-x^2) + 4*x^2/((1-x)*(W(0) - 4*x - 4*x^2)), where W(k) = 1 + 4*x^(2^k) + 5*x^(2^(k+1)) - 4*x^(2^(k+1))*(1 + x^(2^(k+1)))^2/W(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 04 2014
liminf a(n)/n^2 = 1/3 and limsup a(n)/n^2 = 1. - Gheorghe Coserea, Sep 15 2015
Let f(x) = (Sum_{k=-oo..oo} floor(x*2^k)/4^k)/2. Then f(x) is a real-valued extension of a(n), which a(n) approximates in the sense that f(x) = lim_{k->oo} a(floor(x*2^k))/a(2^k). - Velin Yanev, Nov 28 2016
G.f. A(x) satisfies x/(1 - x^2) = A(x) - 4 * (1+x) * A(x^2). - Michael Somos, Nov 30 2016
a(2^k) = 4^k = A000302(k). a(n + 2^k) = a(n) + a(2^k) for 2^k > n >= 1. - David A. Corneth, Oct 16 2018
Sum_{n>=1} 1/a(n) = 1.886176434476107244547259512076353532930680508099044818673061351780360211128... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 12 2022

A004987 a(n) = (3^n/n!)*Product_{k=0..n-1} (3*k + 1). 3-central binomial coefficients.

Original entry on oeis.org

1, 3, 18, 126, 945, 7371, 58968, 480168, 3961386, 33011550, 277297020, 2344420260, 19927572210, 170150808870, 1458435504600, 12542545339560, 108179453553705, 935434098376155, 8107095519260010, 70403724246205350, 612512400941986545, 5337608065351597035, 46582761297613937760
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

Diagonal of rational function R(x,y) = (1 - 9*x*y) / (1 - 2*x - 3*y + 3*y^2 + 9*x^2*y). - Gheorghe Coserea, Jul 01 2016
This is the k = 3 variant of the k-central binomial coefficients c(n,k) with g.f. (1 - k^2*x)^(-1/k), which yield the usual central binomial coefficients A001405 for k = 2. - M. F. Hasler, Nov 12 2024

Examples

			G.f.: 1 + 3*x + 18*x^2 + 126*x^3 + 945*x^4 + 7371*x^5 + 58968*x^6 + 480168*x^7 + ...
		

Crossrefs

Related to diagonal of rational functions: A268545-A268555.

Programs

  • GAP
    List([0..25], n-> 3^n*Product([0..n-1], k-> 3*k+1)/Factorial(n) ); # G. C. Greubel, Aug 22 2019
  • Magma
    [1] cat [3^n*&*[3*k+1: k in [0..n-1]]/Factorial(n): n in [1..25]]; // G. C. Greubel, Aug 22 2019
    
  • Maple
    a:= n-> (3^n/n!)*mul(3*k+1, k=0..n-1); seq(a(n), n=0..25); # G. C. Greubel, Aug 22 2019
  • Mathematica
    Table[(-9)^n Binomial[-1/3, n], {n, 0, 25}] (* Jean-François Alcover, Sep 28 2016, after Peter Luschny *)
  • PARI
    a(n) = prod(k=0, n-1, 3*k + 1)*3^n/n! \\ Michel Marcus, Jun 30 2013
    
  • PARI
    my(x='x, y='y);
    R = (1 - 9*x*y) / (1 - 2*x - 3*y + 3*y^2 + 9*x^2*y);
    diag(n, expr, var) = {
      my(a = vector(n));
      for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
      for (k = 1, n, a[k] = expr;
           for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
      return(a);
    };
    diag(20, R, [x,y])  \\ Gheorghe Coserea, Jul 01 2016
    
  • PARI
    Vec((1-9*x+O(x^25))^(-1/3)) \\ yields the same as:
    apply( {A004987(n)=prod(k=0, n-1, 9*k+3)\n!}, [0..24]) \\ M. F. Hasler, Nov 12 2024
    
  • Sage
    [9^n*rising_factorial(1/3, n)/factorial(n) for n in (0..25)] # G. C. Greubel, Aug 22 2019
    

Formula

G.f.: (1 - 9*x)^(-1/3).
a(n) = (3^n/n!)*A007559(n), n >= 1, a(0) := 1.
a(n) ~ Gamma(1/3)^-1*n^(-2/3)*3^(2*n)*{1 - 1/9*n^-1 + ...}.
Representation as n-th moment of a positive function on (0, 9): a(n) = Integral_{x=0..9} ( x^n*(1/(Pi*sqrt(3)*6*(x/9)^(2/3)*(1-x/9)^(1/3))) ), n >= 0. This function is the solution of the Hausdorff moment problem on (0, 9) with moments equal to a(n). As a consequence this representation is unique. - Karol A. Penson, Jan 30 2003
D-finite with recurrence: n*a(n) + 3*(2-3*n)*a(n-1)=0. - R. J. Mathar, Jun 07 2013
0 = a(n) * (81*a(n+1) - 15*a(n+2)) + a(n+1) * (-3*a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Jan 27 2014
G.f. A(x)=:y satisfies 0 = y'' * y - 4 * y' * y'. - Michael Somos, Jan 27 2014
a(n) = (-9)^n*binomial(-1/3, n). - Peter Luschny, Mar 23 2014
E.g.f.: is the hypergeometric function of type 1F1, in Maple notation hypergeom([1/3], [1], 9*x). - Karol A. Penson, Dec 19 2015
Sum_{n>=0} 1/a(n) = (sqrt(3)*Pi + 3*(12 + log(3)))/32 = 1.3980385924595932... - Ilya Gutkovskiy, Jul 01 2016
Binomial transform of A216316. - Peter Bala, Jul 02 2023
From Peter Bala, Mar 31 2024: (Start)
a(n) = (9^n)*Sum_{k = 0..2*n} (-1)^k*binomial(-1/3, k)* binomial(-1/3, 2*n - k).
(9^n)*a(n) = Sum_{k = 0..2*n} (-1)^k*a(k)*a(2*n-k).
Sum_{k = 0..n} a(k)*a(n-k) = A004988(n).
Sum_{k = 0..2*n} a(k)*a(2*n-k) = 18^n/(2*n)! * Product_{k = 1..n} (6*k - 1)*(3*k - 2). (End)
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^3). - Seiichi Manyama, Jun 20 2025

Extensions

More terms from Ralf Stephan, Mar 13 2004
More terms from Benoit Cloitre, Jun 05 2004

A004128 a(n) = Sum_{k=1..n} floor(3*n/3^k).

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 8, 9, 10, 13, 14, 15, 17, 18, 19, 21, 22, 23, 26, 27, 28, 30, 31, 32, 34, 35, 36, 40, 41, 42, 44, 45, 46, 48, 49, 50, 53, 54, 55, 57, 58, 59, 61, 62, 63, 66, 67, 68, 70, 71, 72, 74, 75, 76, 80, 81, 82, 84, 85, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102
Offset: 0

Views

Author

Keywords

Comments

3-adic valuation of (3n)!; cf. A054861.
Denominators of expansion of (1-x)^{-1/3} are 3^a(n). Numerators are in |A067622|.

References

  • Gary W. Adamson, in "Beyond Measure, A Guided Tour Through Nature, Myth and Number", by Jay Kappraff, World Scientific, 2002, p. 356.

Crossrefs

Programs

  • Haskell
    a004128 n = a004128_list !! (n-1)
    a004128_list = scanl (+) 0 a051064_list
    -- Reinhard Zumkeller, May 23 2013
    
  • Magma
    [n + Valuation(Factorial(n), 3): n in [0..70]]; // Vincenzo Librandi, Jun 12 2019
    
  • Maple
    A004128 := proc(n)
        A054861(3*n) ;
    end proc:
    seq(A004128(n),n=0..100) ; # R. J. Mathar, Nov 04 2017
  • Mathematica
    Table[Total[NestWhileList[Floor[#/3] &, n, # > 0 &]], {n, 0, 70}] (* Birkas Gyorgy, May 20 2012 *)
    A004128 = Log[3, CoefficientList[ Series[1/(1+x)^(1/3), {x, 0, 100}], x] // Denominator] (* Jean-François Alcover, Feb 19 2015 *)
    Flatten[{0, Accumulate[Table[IntegerExponent[3*n, 3], {n, 1, 100}]]}] (* Vaclav Kotesovec, Oct 17 2019 *)
  • PARI
    {a(n) = my(s, t=1); while(t<=n, s += n\t; t*=3);s}; /* Michael Somos, Feb 26 2004 */
    
  • PARI
    a(n) = (3*n-sumdigits(n,3))/2; \\ Christian Krause, Jun 10 2025
    
  • Python
    def A007949(n):
        c = 0
        while not (a:=divmod(n,3))[1]:
            c += 1
            n = a[0]
        return c
    def A004128(n): return n+sum(A007949(i) for i in range(3,n+1)) # Chai Wah Wu, Feb 28 2025
  • Sage
    A004128 = lambda n: A004128(n//3) + n if n > 0 else 0
    [A004128(n) for n in (0..70)]  # Peter Luschny, Nov 16 2012
    

Formula

A051064(n) = a(n+1) - a(n). - Alford Arnold, Jul 19 2000
a(n) = n + floor(n/3) + floor(n/9) + floor(n/27) + ... = n + a(floor(n/3)) = n + A054861(n) = A054861(3n) = (3*n - A053735(n))/2. - Henry Bottomley, May 01 2001
a(n) = Sum_{k>=0} floor(n/3^k). a(n) = Sum_{k=0..floor(log_3(n))} floor(n/3^k), n >= 1. - Hieronymus Fischer, Aug 14 2007
Recurrence: a(n) = n + a(floor(n/3)); a(3n) = 3*n + a(n); a(n*3^m) = 3*n*(3^m-1)/2 + a(n). - Hieronymus Fischer, Aug 14 2007
a(k*3^m) = k*(3^(m+1)-1)/2, 0 <= k < 3, m >= 0. - Hieronymus Fischer, Aug 14 2007
Asymptotic behavior: a(n) = (3/2)*n + O(log(n)), a(n+1) - a(n) = O(log(n)); this follows from the inequalities below. - Hieronymus Fischer, Aug 14 2007
a(n) <= (3n-1)/2; equality holds for powers of 3. - Hieronymus Fischer, Aug 14 2007
a(n) >= (3n-2)/2 - floor(log_3(n)); equality holds for n = 3^m - 1, m > 0. - Hieronymus Fischer, Aug 14 2007
Lim inf (3n/2 - a(n)) = 1/2, for n->oo. - Hieronymus Fischer, Aug 14 2007
Lim sup (3n/2 - log_3(n) - a(n)) = 0, for n->oo. - Hieronymus Fischer, Aug 14 2007
Lim sup (a(n+1) - a(n) - log_3(n)) = 1, for n->oo. - Hieronymus Fischer, Aug 14 2007
G.f.: (Sum_{k>=0} x^(3^k)/(1-x^(3^k)))/(1-x). - Hieronymus Fischer, Aug 14 2007
a(n) = Sum_{k>=0} A030341(n,k)*A003462(k+1). - Philippe Deléham, Oct 21 2011
a(n) ~ 3*n/2 - log(n)/(2*log(3)). - Vaclav Kotesovec, Oct 17 2019

Extensions

Current definition suggested by Jason Earls, Jul 04 2001

A224273 Decimal expansion of Baxter's four-coloring constant.

Original entry on oeis.org

1, 4, 6, 0, 9, 9, 8, 4, 8, 6, 2, 0, 6, 3, 1, 8, 3, 5, 8, 1, 5, 8, 8, 7, 3, 1, 1, 7, 8, 4, 6, 0, 5, 9, 6, 9, 7, 0, 3, 8, 9, 3, 1, 3, 5, 5, 8, 0, 7, 4, 6, 1, 7, 8, 8, 2, 0, 5, 7, 7, 5, 4, 3, 4, 4, 4, 1, 5, 2, 1, 3, 5, 5, 8, 8, 5, 7, 3, 1, 4, 4, 0, 7, 7, 6, 5, 3
Offset: 1

Views

Author

Bruno Berselli, Apr 02 2013

Keywords

Comments

The constant is named after Australian physicist Rodney James Baxter. - Amiram Eldar, Aug 13 2020

Examples

			1.46099848620631835815887311784605969703893135580746178820577543...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003. See p. 413.

Crossrefs

Programs

  • Mathematica
    RealDigits[3 Gamma[1/3]^3/(4 Pi^2), 10, 90][[1]]
  • PARI
    3*gamma(1/3)^3/(4*Pi^2) \\ Michel Marcus, Mar 23 2020

Formula

Equals 1/Product_{n>=1} (1-1/(3n-1)^2) = 3*Gamma(1/3)^3/(4*Pi^2).
Equals 1/(2^(1/3)*A081760). - Kritsada Moomuang, Mar 15 2020
Equals 2*Pi/(sqrt(3)*Gamma(2/3)^3). - Vaclav Kotesovec, Mar 23 2020
Equals Product_{k>=1} (1 + 1/A152751(k)). - Amiram Eldar, Aug 13 2020
Equals Sum_{k>=0} binomial(-1/3, k)^2. - Gerry Martens, Jul 24 2023

A357318 Decimal expansion of 1/(2*L), where L is the conjectured Landau's constant A081760.

Original entry on oeis.org

9, 2, 0, 3, 7, 1, 3, 7, 3, 3, 1, 7, 9, 4, 2, 4, 9, 7, 6, 5, 5, 5, 1, 8, 5, 6, 4, 5, 4, 3, 1, 7, 2, 9, 9, 4, 7, 2, 6, 2, 4, 5, 7, 9, 1, 9, 4, 9, 8, 9, 4, 3, 3, 8, 3, 4, 3, 3, 0, 0, 1, 9, 9, 7, 7, 3, 1, 0, 1, 8, 0, 8, 0, 8, 0, 5, 6, 8, 5, 6, 3, 9, 3, 6, 3, 3, 8, 5
Offset: 0

Views

Author

Stefano Spezia, Sep 23 2022

Keywords

Examples

			0.9203713733179424976555185645431729947262...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[N[Gamma[1/6]/(2Gamma[1/3]Gamma[5/6]),88]]]
  • PARI
    1/(2*gamma(1/3)*gamma(5/6)/gamma(1/6)) \\ Michel Marcus, Sep 24 2022

Formula

Equals 1/(2*A081760) = A175379/(2*A073005*A203145).
Equals Sum_{k,m in Z^2} exp(-Pi*(2/sqrt(3))*(k^2+k*m+m^2))*exp(2*Pi*i*(k/3-m/3)).
Equals Sum_{k>=0} (binomial(-1/3,2*k)^2 - binomial(-1/3,2*k+1)^2). - Gerry Martens, Jul 24 2023
Equals 3*Gamma(1/3)^3 / (2^(8/3) * Pi^2). - Vaclav Kotesovec, Jul 27 2023

A357543 a(n) = (3*n+1)!/(3^n*n!) * Product_{k=1..n} (3*k - 2), for n >= 0.

Original entry on oeis.org

1, 8, 1120, 627200, 896896000, 2611761152000, 13497581633536000, 112839782456360960000, 1427423248072966144000000, 25979103114927983820800000000, 653945983608967208737177600000000, 22056290135163246016287526092800000000, 971138454651237722097139773865984000000000
Offset: 0

Views

Author

Paul D. Hanna, Oct 10 2022

Keywords

Comments

Equals row sums of triangle A357540.
a(n) = (3*n+1) * A178575(n) for n >= 0.

Crossrefs

Programs

  • PARI
    {a(n) = (3*n+1)!/(3^n*n!) * prod(k=1, n, 3*k-2)}
    for(n=0,20, print1(a(n),", "))

Formula

E.g.f.: Sum_{n>=0} a(n) * x^(3*n+1) / (3*n+1)! = x/(1 - x^3)^(1/3).
a(n) ~ sqrt(2*Pi) * 3^(3*n + 3/2) * n^(3*n + 5/6) / (Gamma(1/3) * exp(3*n)). - Vaclav Kotesovec, Oct 10 2022

A379092 Decimal expansion of sqrt(A224273).

Original entry on oeis.org

1, 2, 0, 8, 7, 1, 7, 7, 0, 3, 2, 7, 3, 3, 1, 5, 3, 2, 7, 2, 4, 4, 8, 4, 7, 9, 4, 3, 5, 1, 4, 8, 5, 6, 1, 6, 3, 4, 3, 4, 9, 2, 0, 7, 3, 3, 1, 1, 2, 5, 0, 4, 9, 2, 5, 0, 0, 0, 4, 3, 5, 0, 3, 9, 9, 3, 5, 0, 8, 1, 1, 6, 6, 7, 0, 8, 9, 4, 4, 7, 7, 9, 8, 5, 0, 3, 5, 1, 6, 8, 4, 7, 3, 4, 5, 3, 0, 7, 6, 5
Offset: 1

Views

Author

Stefano Spezia, Dec 15 2024

Keywords

Examples

			1.2087177032733153272448479435148561634349207331...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.24.1, p. 413.

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[3] Gamma[1/3]^(3/2)/(2 Pi), 10, 100][[1]]

Formula

Equals sqrt(3)*Gamma(1/3)^(3/2)/(2*Pi).
Showing 1-7 of 7 results.