cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A178982 Partial sums of floor(Fibonacci(n)/2).

Original entry on oeis.org

0, 0, 0, 1, 2, 4, 8, 14, 24, 41, 68, 112, 184, 300, 488, 793, 1286, 2084, 3376, 5466, 8848, 14321, 23176, 37504, 60688, 98200, 158896, 257105, 416010, 673124, 1089144, 1762278, 2851432, 4613721, 7465164, 12078896, 19544072, 31622980
Offset: 0

Views

Author

Mircea Merca, Jan 02 2011

Keywords

Comments

Partial sums of A004695.

Examples

			a(4) = 0 + 0 + 0 + 1 + 1 = 2.
		

Crossrefs

Programs

  • Maple
    seq(round(fibonacci(n+2)/2-(n+2)/3),n=0..40).
  • Mathematica
    f[n_] := Floor[Fibonacci@n/2]; Accumulate@ Array[f, 38, 0]

Formula

a(n) = round(Fibonacci(n+2)/2 - (n+2)/3).
a(n) = round(Fibonacci(n+2)/2 - n/3 - 1/2).
a(n) = floor(Fibonacci(n+2)/2 - n/3 - 1/2).
a(n) = ceiling(Fibonacci(n+2)/2 - (n+1)/3 - 1/2).
a(n) = a(n-3) + Fibonacci(n) - 1, n > 3.
a(n) = 2*a(n-1) - 2*a(n-4) + a(n-6), n > 5.
G.f.: -x^3 / ( (x^2+x+1)*(x^2+x-1)*(x-1)^2 ).
a(n) = (1/2) * (Fibonacci(n+2) + floor(n/3) - n - 1). - Ralf Stephan, Jan 19 2014

A104221 a(n) = Fibonacci(n) - (Fibonacci(n) mod 2).

Original entry on oeis.org

0, 0, 0, 2, 2, 4, 8, 12, 20, 34, 54, 88, 144, 232, 376, 610, 986, 1596, 2584, 4180, 6764, 10946, 17710, 28656, 46368, 75024, 121392, 196418, 317810, 514228, 832040, 1346268, 2178308, 3524578, 5702886, 9227464, 14930352, 24157816, 39088168
Offset: 0

Views

Author

Roger L. Bagula, Mar 14 2005

Keywords

Comments

Also the circumference of the (n-2)-Fibonacci cube graph for n > 4. - Eric W. Weisstein, Sep 03 2017

Crossrefs

Programs

  • Magma
    [2*Floor(Fibonacci(n)/2): n in [0..40]]; // G. C. Greubel, Jul 08 2022
    
  • Maple
    f:= gfun:-rectoproc({a(n) = a(n-1) + a(n-2) + a(n-3) - a(n-4) - a(n-5),
    seq(a(i)=[0, 0, 0, 2, 2][i+1],i=0..4)},a(n),remember):
    map(f, [$0..50]); # Robert Israel, Mar 25 2018
  • Mathematica
    2*Floor[Fibonacci[Range[0, 50]]/2] (* Eric W. Weisstein, Sep 03 2017 *)
    Table[2/3 (Cos[2n*Pi/3] -1) +Fibonacci[n], {n,0,50}] (* Eric W. Weisstein, Sep 03 2017 *)
    Table[(I^n*LucasL[n,I] -2)/3 +Fibonacci[n], {n,0,50}] (* Eric W. Weisstein, Mar 25 2018 *)
    LinearRecurrence[{1,1,1,-1,-1}, {0,0,0,2,2}, 51] (* Eric W. Weisstein, Sep 03 2017 *)
    CoefficientList[Series[(2x^3)/(1-x-x^2-x^3+x^4+x^5), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 03 2017 *)
  • PARI
    a(n) = 2*(fibonacci(n)\2); \\ Altug Alkan, Mar 25 2018
    
  • SageMath
    [2*(fibonacci(n)//2) for n in (0..40)] # G. C. Greubel, Jul 08 2022

Formula

a(n) = 2*A004695(n). - R. J. Mathar, Jul 23 2010
G.f.: 2*x^3/((1-x)*(1+x+x^2)*(1-x-x^2)). - R. J. Mathar, Jul 23 2010
a(n) = a(n-1) + a(n-2) + a(n-3) - a(n-4) - a(n-5). - Eric W. Weisstein, Sep 03 2017
a(n) = Fibonacci(n) - A011655(n). - David A. Corneth, Mar 25 2018
a(n) = (1/3)*(-2 +3*Fibonacci(n) + 2*ChebyshevU(n, -1/2) + ChebyshevU(n-1, -1/2)). - G. C. Greubel, Jul 08 2022

A124234 Riordan array (1/(1-x), x(1+x)^2).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 5, 1, 1, 4, 11, 7, 1, 1, 4, 15, 22, 9, 1, 1, 4, 16, 42, 37, 11, 1, 1, 4, 16, 57, 93, 56, 13, 1, 1, 4, 16, 63, 163, 176, 79, 15, 1, 1, 4, 16, 64, 219, 386, 299, 106, 17, 1, 1, 4, 16, 64, 247, 638, 794, 470, 137, 19, 1
Offset: 0

Views

Author

Paul Barry, Oct 22 2006

Keywords

Comments

Row sums are A077864. Diagonal sums are A004695(n+3). T(2n,n) is A032443.

Examples

			Triangle begins
1,
1, 1,
1, 3, 1,
1, 4, 5, 1,
1, 4, 11, 7, 1,
1, 4, 15, 22, 9, 1,
1, 4, 16, 42, 37, 11, 1
		

Crossrefs

Programs

  • PARI
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(sum(j=0, n-k, binomial(2*k, j)), ", ")); print();); \\ Michel Marcus, Nov 05 2016

Formula

T(n,k) = Sum_{j=0..n-k} C(2k,j).

A173714 Floor(Lucas(n+1)/2), Lucas(n) = A000032(n).

Original entry on oeis.org

0, 1, 2, 3, 5, 9, 14, 23, 38, 61, 99, 161, 260, 421, 682, 1103, 1785, 2889, 4674, 7563, 12238, 19801, 32039, 51841, 83880, 135721, 219602, 355323, 574925, 930249, 1505174
Offset: 0

Views

Author

Gary Detlefs, Nov 25 2010

Keywords

Comments

Sequences of the form a(0)=1, a(1)=b,
a(n) = a(n-1) + a(n-2) + 1 if n mod 3 =2, else
a(n) = a(n-1) + a(n-2) have a closed form of
a(n) = F(n-1)*a + F(n)*b + floor(F(n+1)/2),
where F(n)= Fibonacci(n) = A000045(n), floor(F(n+1)/2) = A004695(n+1).
We can generalize the definition of this sequence by changing the added 1 to any value of k and changing the last term of the formula to floor(F(n+1)/2)*k.
Two variants: if we add the constant at n mod 3 = 0, then a(n)=F(n-1)*a + F(n)*b + floor(F(n)/2), and if for n mod 3 =1, then a(n)=F(n-1)*a + F(n)*b + floor(F(n-1)/2).

Examples

			a(5) = a(4) + a(3) + 1 = 5 +3 +1 =9 because 5 mod 3 = 2.
a(6) = a(5) + a(4) = 9 +5 =14 because 6 mod 3 <>2.
		

Programs

  • Magma
    [Floor(Lucas(n+1)/2): n in [0..50]]; // Vincenzo Librandi, Apr 24 2011
  • Maple
    with(combinat):
    g:=(a,b,n)->fibonacci(n-1)*a+fibonacci(n)*b + floor(fibonacci(n+1)/2):
    seq(g(0,1,n),n=0..30)
  • Mathematica
    Table[Floor[LucasL[n + 1]/2], {n,0,50}] (* G. C. Greubel, Nov 24 2016 *)

Formula

a(0)= 0, a(1)=1, a(n)=a(n-1)+a(n-2)+1 if n mod 3 =2, else a(n)=a(n-1)+a(n-2).
G.f.: x*(1+x-x^3)/[(1-x-x^2)*(1-x^3)].
a(n) = a(n-1) +a(n-2) +(1+(-1)^Fib(n+1))/2.
a(n) = A000204(n+1)/2 + A099837(n+1)/6 - 1/3. - R. J. Mathar, Nov 26 2010
a(n) = Fibonacci(n) + floor(Fibonacci(n+1)/2). - Gary Detlefs, Dec 10 2010

A214286 a(n) = floor(Fibonacci(n)/7).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 3, 4, 7, 12, 20, 33, 53, 87, 141, 228, 369, 597, 966, 1563, 2530, 4093, 6624, 10717, 17341, 28059, 45401, 73461, 118862, 192324, 311187, 503511, 814698, 1318209, 2132907, 3451116, 5584024, 9035140, 14619165
Offset: 0

Views

Author

Vincenzo Librandi, Jul 10 2012

Keywords

Crossrefs

Programs

  • Magma
    [Floor(Fibonacci(n)/7): n in [0..40]];
    
  • Mathematica
    Floor[Fibonacci[Range[0, 40]]/7] (* modified by G. C. Greubel, May 22 2019 *)
    LinearRecurrence[{1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1},{0,0,0,0,0,0,1,1,3,4,7,12,20,33,53,87,141,228},50] (* Harvey P. Dale, Dec 01 2020 *)
  • PARI
    vector(40, n, n--; fibonacci(n)\7 ) \\ G. C. Greubel, May 22 2019
    
  • Sage
    [floor(fibonacci(n)/7) for n in (0..40)] # G. C. Greubel, May 22 2019

Formula

G.f.: x^6*(1+x^2+x^5+x^6+x^7+x^9+x^10) / ( (1-x-x^2)*(1-x^16) ). - R. J. Mathar, Jul 14 2012
a(n) = (A000045(n) - A105870(n))/7. - R. J. Mathar, Jul 14 2012

A260710 Expansion of 1/(1 - x - x^2 - x^4 + x^5 + x^7).

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 16, 25, 43, 69, 116, 188, 313, 511, 846, 1386, 2288, 3756, 6191, 10174, 16756, 27552, 45357, 74604, 122787, 201996, 332414, 546901, 899946, 1480699, 2436459, 4008858, 6596366, 10853563, 17858788, 29384804, 48350401, 79555943, 130902711
Offset: 0

Views

Author

David Neil McGrath, Jul 30 2015

Keywords

Comments

This sequence counts partially ordered partitions of (n) into parts 1,2,3,4 where the order (position) of adjacent pairs of numbers (1,2);(2,3);(3,4) is unimportant. Alternatively the order of the complementary pairs (1,4);(1,3);(2,4) is important.

Examples

			There are 25 partially ordered partitions of 7, i.e., a(7) = 25. These are (43=34),(421=412),(124=214),(241),(142),(4111),(1411),(1141),(1114),(331),(313),(133),(1132=1123),(2131=1231),(1312=1321),(2311=3211),(31111),(13111),(11311),(11131),(11113),(2221=four),(22111=ten),(211111=six),(1111111).
		

Crossrefs

Programs

  • Magma
    I:=[1,1,2,3,6,9,16]; [n le 7 select I[n] else Self(n-1)+Self(n-2)+Self(n-4)-Self(n-5)-Self(n-7): n in [1..40]]; // Vincenzo Librandi, Aug 04 2015
    
  • Mathematica
    LinearRecurrence[{1, 1, 0, 1, -1, 0, -1}, {1, 1, 2, 3, 6, 9, 16}, 50] (* Vincenzo Librandi, Aug 04 2015 *)
  • PARI
    Vec(1/(1 - x - x^2 - x^4 + x^5 + x^7) + O(x^50)) \\ Michel Marcus, Aug 06 2015

Formula

G.f: 1/(1 - x - x^2 - x^4 + x^5 + x^7).
a(n) = a(n-1) + a(n-2) + a(n-4) - a(n-5) - a(n-7).
Construct the matrix array T(n,j) = [A^*j]*[S^*(j-1)] where A=(1,1,0,1,-1,0,-1) and S=(0,1,0,...) (A063524). [* is convolution operation] Define S^*0=I with I=(1,0,...). a(n) = Sum_{j=1..n} T(n,j).

A293505 a(n) is the integer k that minimizes |k/Fibonacci(n) - 1/2|.

Original entry on oeis.org

0, 0, 0, 1, 2, 2, 4, 6, 10, 17, 28, 44, 72, 116, 188, 305, 494, 798, 1292, 2090, 3382, 5473, 8856, 14328, 23184, 37512, 60696, 98209, 158906, 257114, 416020, 673134, 1089154, 1762289, 2851444, 4613732, 7465176, 12078908, 19544084, 31622993, 51167078
Offset: 0

Views

Author

Clark Kimberling, Oct 12 2017

Keywords

Crossrefs

Programs

  • Mathematica
    z = 120; r = 1/2; f[n_] := Fibonacci[n];
    Table[Floor[r*f[n]], {n, 0, z}];   (* A004695 *)
    Table[Ceiling[r*f[n]], {n, 0, z}]; (* A173173 *)
    Table[Round[r*f[n]], {n, 0, z}];   (* A293505 *)

Formula

G.f.: -((x^3 (-1 - x + x^2))/((-1 + x) (1 + x) (1 - x + x^2) (-1 + x + x^2) (1 + x + x^2))).
a(n) = a(n-1) + a(n-2) + a(n-6) - a(n-7) - a(n-8) for n >= 9.
a(n) = floor(1/2 + Fibonacci(n)/2).
a(n) = A004695(n) if (fractional part of Fibonacci(n)/2) < 1/2, otherwise a(n) = A293419(n).

A131255 A004070 * A000012(signed).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 0, 2, 1, 0, 1, 1, 3, 1, 0, 1, 1, 3, 4, 1, 1, 0, 2, 2, 6, 5, 1, 0, 1, 1, 3, 5, 10, 6, 1, 0, 1, 1, 3, 5, 11, 15, 7, 1, 1, 0, 2, 2, 6, 10, 21, 21, 8, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 23 2007

Keywords

Comments

Row sums = A004695 starting (1, 1, 2, 4, 6, 10, 17, 27, 44, 72, ...). A058393 = A000012(signed) * A004070.

Examples

			First few rows of the triangle:
  1;
  0,  1;
  0,  1,  1;
  1,  0,  2,  1;
  0,  1,  1,  3,  1;
  0,  1,  1,  3,  4,  1;
  1,  0,  2,  2,  6,  5,  1;
  0,  1,  1,  3,  5, 10,  6,  1;
  0,  1,  1,  3,  5, 11, 15,  7,  1;
  1,  0,  2,  2,  6, 10,  2, 21,  8,  1;
  ...
		

Crossrefs

Formula

A004070 * A000012, where A000012 = (1; -1,1; 1,-1,1; ...).

A147997 Number of nonnegative even integers <= Fibonacci(n).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 5, 7, 11, 18, 28, 45, 73, 117, 189, 306, 494, 799, 1293, 2091, 3383, 5474, 8856, 14329, 23185, 37513, 60697, 98210, 158906, 257115, 416021, 673135, 1089155, 1762290, 2851444, 4613733, 7465177, 12078909
Offset: 0

Views

Author

Giovanni Teofilatto, Nov 19 2008

Keywords

Crossrefs

Programs

Formula

a(n) = 1+floor( A000045(n)/2) = 1+A004695(n). - R. J. Mathar, Jan 30 2010
From Chai Wah Wu, Sep 23 2016: (Start)
a(n) = a(n-1) + a(n-2) + a(n-3) - a(n-4) - a(n-5) for n > 4.
G.f.: (1 + x)*(1 - x - x^3)/((1 - x)*(1 - x - x^2)*(1 + x + x^2)). (End)

Extensions

Definition and offset corrected by R. J. Mathar, Jan 30 2010
Definition corrected by Joel B. Lewis, Nov 14 2012

A279890 Expansion of x*(1 - x + 2*x^3 - x^4)/((1 - x)*(1 + x)*(1 - x + x^2)*(1 - x - x^2)).

Original entry on oeis.org

0, 1, 1, 2, 4, 7, 12, 19, 31, 50, 82, 133, 216, 349, 565, 914, 1480, 2395, 3876, 6271, 10147, 16418, 26566, 42985, 69552, 112537, 182089, 294626, 476716, 771343, 1248060, 2019403, 3267463, 5286866, 8554330, 13841197, 22395528, 36236725, 58632253, 94868978, 153501232, 248370211, 401871444, 650241655, 1052113099, 1702354754
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 22 2016

Keywords

Comments

The integer part of the harmonic mean of Fibonacci(n), Fibonacci(n+1) and Fibonacci(n+2).
The o.g.f. for the numerators of the fractional part of the harmonic mean of Fibonacci(n), Fibonacci(n+1) and Fibonacci(n+2) is 6*x/((1 + x - x^2)*(1 - 4*x - x^2)).
The o.g.f. for the denominators of the fractional part of the harmonic mean of Fibonacci(n), Fibonacci(n+1) and Fibonacci(n+2) is (1 + 3*x - x^2)/((1 + x)*(1 - 3*x + x^2)).
Convolution of Fibonacci numbers and periodic sequence [1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, ...].

Examples

			a(1) = floor(3/(1/F(1)+1/F(2)+1/F(3))) = floor(3/(1/1+1/1+1/2)) = 1;
a(2) = floor(3/(1/F(2)+1/F(3)+1/F(4))) = floor(3/(1/1+1/2+1/3)) = 1;
a(3) = floor(3/(1/F(3)+1/F(4)+1/F(5))) = floor(3/(1/2+1/3+1/5)) = 2, etc.
		

Crossrefs

Cf. A062114 (the integer part of the harmonic mean of Fibonacci(n+1) and Fibonacci(n+2) for n>0).
Cf. A074331 (the integer part of the geometric mean of Fibonacci(n), Fibonacci(n+1) and Fibonacci(n+2)).

Programs

  • Mathematica
    LinearRecurrence[{2, 0, -2, 2, 0, -1}, {0, 1, 1, 2, 4, 7}, 46]
    Table[Floor[3 Fibonacci[n] Fibonacci[n + 1] Fibonacci[n + 2]/(2 Fibonacci[n + 1] Fibonacci[n + 2] - (-1)^n)], {n, 0, 45}]
  • PARI
    concat(0, Vec((x*(1-x+2*x^3-x^4)/((1-x)*(1+x)*(1-x+x^2))) + O(x^40))) \\ Felix Fröhlich, Dec 22 2016

Formula

G.f.: x*(1 - x + 2*x^3 - x^4)/((1 - x)*(1 + x)*(1 - x + x^2)*(1 - x - x^2)).
a(n) = 2*a(n-1) - 2*a(n-3) + 2*a(n-4) - a(n-6).
a(n) = (9*sqrt(5)*(((1 + sqrt(5))/2)^n - ((1 - sqrt(5))/2)^n) + 5*((-1)^n + 2*cos(Pi*n/3) - 3))/30.
a(n) = floor(3*F(n)*F(n+1)*F(n+2)/(2*F(n+1)*F(n+2)-(-1)^n)), where F(n) is the n-th Fibonacci number (A000045).
a(n) = floor(3*A065563(n)/A236428(n+1)).
a(n) = 3*A000045(n)/2 + ((-1)^n + 2*cos(Pi*n/3) - 3)/6.
a(n) ~ 3*phi^n/(2*sqrt(5)), where phi is the golden ratio (A001622).
Lim_{n->infinity} a(n+1)/a(n) = phi.
Previous Showing 11-20 of 20 results.