cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A097186 Triangle read by rows in which row n gives coefficients of polynomial R_n(y) that satisfies R_n(1/3) = 3^n, where R_n(y) forms the initial (n+1) terms of g.f. A057083(y)^(n+1).

Original entry on oeis.org

1, 1, 6, 1, 9, 45, 1, 12, 78, 360, 1, 15, 120, 675, 2970, 1, 18, 171, 1134, 5859, 24948, 1, 21, 231, 1764, 10458, 51030, 212058, 1, 24, 300, 2592, 17334, 95256, 445824, 1817640, 1, 27, 378, 3645, 27135, 165726, 861597, 3905253, 15677145, 1, 30, 465, 4950, 40590, 272646, 1557765, 7760610, 34285680, 135868590
Offset: 0

Views

Author

Paul D. Hanna, Aug 03 2004

Keywords

Comments

Row sums form A097189. Main diagonal is A004988. Ratio of g.f.s of any two adjacent diagonals equals g.f. of A097188, where the g.f.s satisfy: A057083(x*A097188(x)) = A097188(x).

Examples

			Row polynomials evaluated at y=1/3 equals powers of 3:
3^1 = 1 + 6/3;
3^2 = 1 + 9/3 + 45/3^2;
3^3 = 1 + 12/3 + 78/3^2 + 360/3^3;
3^4 = 1 + 15/3 + 120/3^2 + 675/3^3 + 2970/3^4;
where A057083(y)^(n+1) has the same initial terms as the n-th row:
A057083(y) = 1 + 3y + 6y^2 + 9y^3 + 9y^4 + 0y^5 - 27y^6 +...
A057083(y)^2 = 1 + 6y +...
A057083(y)^3 = 1 + 9y + 45y^2 +...
A057083(y)^4 = 1 + 12y + 78y^2 + 360y^3 +...
A057083(y)^5 = 1 + 15y + 120y^2 + 675y^3 + 2970y^4 +...
Rows begin with n=0:
  1;
  1,  6;
  1,  9,  45;
  1, 12,  78,  360;
  1, 15, 120,  675,  2970;
  1, 18, 171, 1134,  5859,  24948;
  1, 21, 231, 1764, 10458,  51030, 212058;
  1, 24, 300, 2592, 17334,  95256, 445824, 1817640;
  1, 27, 378, 3645, 27135, 165726, 861597, 3905253, 15677145; ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[3y/((1-9xy) - (1-3y)*(1-9xy)^(2/3)), {x,0,n}, {y,0,k}], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 17 2019 *)
  • PARI
    {T(n,k)=if(n==0,1,if(k==0,1,if(k==n, 3^n*(3^n -sum(j=0,n-1, T(n,j)/3^j)), polcoeff((Ser(vector(n,i,T(n-1,i-1)), x) +x*O(x^k))^((n+1)/n),k,x))))}

Formula

G.f.: A(x, y) = 3*y/((1-9*x*y) + (3*y-1)*(1-9*x*y)^(2/3)).
G.f.: A(x, y) = A004988(x*y)/(1 - x*A097188(x*y)).

Extensions

More terms added by G. C. Greubel, Sep 17 2019

A383601 Expansion of 1/( (1-x) * (1-10*x)^2 )^(1/3).

Original entry on oeis.org

1, 7, 58, 514, 4705, 43879, 414208, 3943492, 37782346, 363760390, 3515819020, 34088616940, 331383573010, 3228590970430, 31514912933800, 308126549765440, 3016908101224105, 29576113797737695, 290271761086278610, 2851684765215491050, 28040613734007656545
Offset: 0

Views

Author

Seiichi Manyama, May 01 2025

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( 1/( (1-x) * (1-10*x)^2 )^(1/3))); // Vincenzo Librandi, May 05 2025
  • Mathematica
    Table[Sum[(-9)^k* Binomial[-2/3,k]* Binomial[n,k],{k,0,n}],{n,0,22}] (* Vincenzo Librandi, May 05 2025 *)
  • PARI
    a(n) = sum(k=0, n, (-9)^k*binomial(-2/3, k)*binomial(n, k));
    

Formula

a(n) = Sum_{k=0..n} (-9)^k * binomial(-2/3,k) * binomial(n,k).
n*a(n) = (11*n-4)*a(n-1) - 10*(n-1)*a(n-2) for n > 1.
a(n) ~ Gamma(1/3) * 2^(n - 2/3) * 5^(n + 1/3) / (Pi * 3^(1/6) * n^(1/3)). - Vaclav Kotesovec, May 02 2025
a(n) = hypergeom([2/3, -n], [1], -9). - Stefano Spezia, May 04 2025

A216705 a(n) = Product_{k=1..n} (81 - 9/k).

Original entry on oeis.org

1, 72, 5508, 429624, 33832890, 2679564888, 213025408596, 16981168285224, 1356370816782267, 108509665342581360, 8691624193940766936, 696910230823250585232, 55927046023565859464868, 4491372003738673637024784, 360913821729000560118063000
Offset: 0

Views

Author

Michel Lagneau, Sep 16 2012

Keywords

Comments

This sequence is generalizable: Product_{k=1..n} (q^2 - q/k) = (q^n/n!) * Product_{k=0..n-1} (q*k + q-1) = expansion of (1- x*q^2)^((1-q)/q).

Crossrefs

Programs

  • Maple
    seq(product(81-9/k, k=1.. n), n=0..20);
    seq((9^n/n!)*product(9*k+8, k=0.. n-1), n=0..20);
  • Mathematica
    Table[Product[81-9/k,{k,n}],{n,0,20}] (* Harvey P. Dale, Jul 20 2021 *)

Formula

From Amiram Eldar, Aug 17 2025: (Start)
a(n) = 81^n * Gamma(n+8/9) / (Gamma(8/9) * Gamma(n+1)).
a(n) ~ c * 81^n / n^(1/9), where c = 1/Gamma(8/9) = 0.927851... . (End)

A216706 a(n) = Product_{k=1..n} (100 - 10/k).

Original entry on oeis.org

1, 90, 8550, 826500, 80583750, 7897207500, 776558737500, 76546504125000, 7558967282343750, 747497875698437500, 74002289694145312500, 7332954160601671875000, 727184620926332460937500, 72159089307305298046875000, 7164366724082454591796875000
Offset: 0

Views

Author

Michel Lagneau, Sep 16 2012

Keywords

Comments

This sequence is generalizable: Product_{k=1..n} (q^2 - q/k) = (q^n/n!) * Product_{k=0..n-1} (q*k + q-1) = expansion of (1- x*q^2)^((1-q)/q).

Crossrefs

Programs

  • Maple
    seq(product(100-10/k, k=1.. n), n=0..20);
    seq((10^n/n!)*product(10*k+9, k=0.. n-1), n=0..20);

Formula

From Amiram Eldar, Aug 17 2025: (Start)
a(n) = 100^n * Gamma(n+9/10) / (Gamma(9/10) * Gamma(n+1)).
a(n) ~ c * 100^n / n^(1/10), where c = 1/Gamma(9/10) = 1/A340725 = 0.935778... . (End)

A216786 a(n) = Product_{k=1..n} (121 - 11/k).

Original entry on oeis.org

1, 110, 12705, 1490720, 176277640, 20941783632, 2495562549480, 298041470195040, 35653210872081660, 4270462368900447720, 512028438031163681628, 61443412563739641795360, 7378329792029068652259480, 886534702703800402679177520, 106574136046464005550646840440
Offset: 0

Views

Author

Michel Lagneau, Sep 16 2012

Keywords

Comments

This sequence is generalizable: Product_{k=1..n} (q^2 - q/k) = (q^n/n!) * Product_{k=0..n-1} (q*k + q-1) = expansion of (1- x*q^2)^((1-q)/q).

Crossrefs

Programs

  • Maple
    seq(product(121-11/k, k=1.. n), n=0..20);
    seq((11^n/n!)*product(11*k+10, k=0.. n-1), n=0..20);
    A216786 := proc(n)
        binomial(-10/11,n)*(-121)^n ;
    end proc: # R. J. Mathar, Sep 17 2012
  • Mathematica
    Join[{1},FoldList[Times,121-11/Range[20]]] (* Harvey P. Dale, Mar 15 2016 *)

Formula

From Amiram Eldar, Aug 17 2025: (Start)
a(n) = 121^n * Gamma(n+10/11) / (Gamma(10/11) * Gamma(n+1)).
a(n) ~ c * 121^n / n^(1/11), where c = 1/Gamma(10/11) = 0.942148... . (End)

A283151 Triangle read by rows: Riordan array (1/(1-9x)^(2/3), x/(9x-1)).

Original entry on oeis.org

1, 6, -1, 45, -15, 1, 360, -180, 24, -1, 2970, -1980, 396, -33, 1, 24948, -20790, 5544, -693, 42, -1, 212058, -212058, 70686, -11781, 1071, -51, 1, 1817640, -2120580, 848232, -176715, 21420, -1530, 60, -1, 15677145, -20902860, 9754668, -2438667, 369495, -35190, 2070, -69, 1, 135868590, -203802885
Offset: 0

Views

Author

Tom Richardson, Mar 01 2017

Keywords

Comments

This is an example of a Riordan group involution.
Dual Riordan array of A283150.
With A283150 and A248324, forms doubly infinite Riordan array. For b and c the sequences A283150 and A248324, respectively, and i,j >= 0, the doubly infinite array with d(i,j) = a(i,j), d(-j,-i) = b(i,j), d(i,-j) = c(i,j), and d(-i,j) = 0 (except d(0,0)=1) is a doubly infinite Riordan array.

Examples

			Triangle begins
         1;
         6,        -1;
        45,       -15,       1;
       360,      -180,      24,       -1;
      2970,     -1980,     396,      -33,      1;
     24948,    -20790,    5544,     -693,     42,     -1;
    212058,   -212058,   70686,   -11781,   1071,    -51,    1;
   1817640,  -2120580,  848232,  -176715,  21420,  -1530,   60,  -1;
  15677145, -20902860, 9754668, -2438667, 369495, -35190, 2070, -69, 1;
		

Crossrefs

Formula

a(m,n) = binomial(-n-2/3, m-n)*(-1)^m*9^(m-n).
G.f.: (1-9x)^(1/3)/(xy-9x+1).
Recurrence: a(m,n) = a(m,n-1)*(n-1-m)/(9*n-3) for 0 < n <= m; matrix inverse of a(m,n) is a(m,n). - Werner Schulte, Aug 05 2017
From Peter Bala, Mar 05 2018 (Start):
Let P(n,x) = Sum_{k = 0..n} T(n,k)*x^(n-k) denote the n-th row polynomial in descending powers of x. Then (-1)^n*P(n,x) is the n-th degree Taylor polynomial of (1 - 9*x)^(n-1/3) about 0. For example, for n = 4 we have (1 - 9*x)^(11/3) = 2970*x^4 - 1980*x^3 + 396*x^2 - 33*x + 1 + O(x^5).
Let R(n,x) denote the n-th row polynomial of this triangle. The polynomial R(n,9*x) has the e.g.f. Sum_{k = 0..n} T(n,k)*(9*x)^k/k!. The e.g.f. for the n-th diagonal of the triangle (starting at n = 0 for the main diagonal) equals exp(-x) * the e.g.f. for the polynomial R(n,9*x). For example, when n = 3 we have exp(-x)*(360 - 180*(9*x) + 24*(9*x)^2/2! - (9*x)^3/3!) = 360 - 1980*x + 5544*x^2/2! - 11781*x^3/3! + 21420*x^4/4! - ....
Let F(x) = (1 - ( 1 - 9*x)^(1/3))/(3*x). See A025748. The derivatives of F(x) are related to the row polynomials P(n,x) by the identity x^n/n! * (d/dx)^n(F(x)) = 1/(3*x)*( (-1)^n - P(n,x)/(1 - 9*x)^(n-1/3) ), n = 0,1,2,.... Cf. A283151 and A046521. (End)
From Peter Bala, Aug 18 2021: (Start)
T(n,k) = (-1)^k*binomial(n-1/3, n-k)*9^(n-k).
Analogous to the binomial transform we have the following sequence transformation formula: g(n) = Sum_{k = 0..n} T(n,k)*b^(n-k)*f(k) iff f(n) = Sum_{k = 0..n} T(n,k)*b^(n-k)*g(k). See Prodinger, bottom of p. 413, with b replaced with 9*b, c = -1 and d = 2/3.
Equivalently, if F(x) = Sum_{n >= 0} f(n)*x^n and G(x) = Sum_{n >= 0} g(n)*x^n are a pair of formal power series then
G(x) = (1/(1 - 9*b*x)^(2/3)) * F(x/(1 - 9*b*x)) iff F(x) = (1/(1 + 9*b*x)^(2/3)) * G(x/(1 + 9*b*x)).
The infinitesimal generator of the unsigned array has the sequence (9*n+6) n>=0 on the main subdiagonal and zeros elsewhere. The m-th power of the unsigned array has entries m^(n-k)*|T(n,k)|. (End)

Extensions

Offset corrected by Werner Schulte, Aug 05 2017

A097189 Row sums of triangle A097186, in which the n-th row polynomial R_n(y) is formed from the initial (n+1) terms of g.f. A057083(y)^(n+1), where R_n(1/3) = 3^n for all n >= 0.

Original entry on oeis.org

1, 7, 55, 451, 3781, 32131, 275563, 2378971, 20640907, 179791327, 1571002291, 13762897435, 120832716655, 1062818450155, 9363143224315, 82600459304203, 729572125425661, 6450872644562491, 57092964352312951, 505729048454449651
Offset: 0

Views

Author

Paul D. Hanna, Aug 03 2004

Keywords

Crossrefs

Programs

  • GAP
    List([0..30], n-> 1 + Sum([0..n-1], k-> Sum([0..n-k], j-> (-1)^(n-k-j)*3^j*Binomial(j, n-k-j)*Binomial(n+j, n) )) ); # G. C. Greubel, Sep 17 2019
  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 3/((1-9*x) + 2*(1-9*x)^(2/3)) )); // G. C. Greubel, Sep 17 2019
    
  • Maple
    seq(coeff(series(3/((1-9*x) + 2*(1-9*x)^(2/3)), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Sep 17 2019
  • Mathematica
    CoefficientList[Series[3/((1-9*x) + 2*(1-9*x)^(2/3)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 04 2014 *)
  • Maxima
    a(n):=sum(sum(binomial(k,n-m-k)*3^k*(-1)^(n-m-k)*binomial(n+k,n),k,0,n-m),m,0,n-1)+1; /* Vladimir Kruchinin, Sep 09 2019 */
    
  • PARI
    a(n)=polcoeff(3/((1-9*x)+2*(1-9*x+x*O(x^n))^(2/3)),n,x)
    
  • Sage
    def A097189_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( 3/((1-9*x) + 2*(1-9*x)^(2/3)) ).list()
    A097189_list(30) # G. C. Greubel, Sep 17 2019
    

Formula

G.f.: A(x) = 3/((1-9*x) + 2*(1-9*x)^(2/3)).
G.f.: A(x) = A004988(x)/(1 - x*A097188(x)).
a(n) = 1 + Sum_{m=0..n-1} Sum_{k=0..n-m} C(k,n-m-k)*3^k*(-1)^(n-m-k)*C(n+k,n). - Vladimir Kruchinin, Sep 17 2019
Conjecture: n*(n-1)*a(n) - (19*n-18)*(n-1)*a(n-1) + 9*(11*n^2-31*n+22)*a(n-2) - 9*(3*n-4)*(3*n-5)*a(n-3) = 0. - R. J. Mathar, Nov 16 2012
a(n) ~ 3^(2*n+1)/(2*Gamma(2/3) * n^(1/3))*(1 - sqrt(3)*Gamma(2/3)^2 / (4*Pi*n^(1/3))). - Vaclav Kotesovec, Feb 04 2014

A097187 Antidiagonal sums of triangle A097186, in which the n-th row polynomial R_n(y) is formed from the initial (n+1) terms of g.f. A057083(y)^(n+1), where R_n(1/3) = 3^n for all n>=0.

Original entry on oeis.org

1, 1, 7, 10, 58, 94, 499, 868, 4360, 7951, 38407, 72508, 339997, 659380, 3019639, 5984968, 26880052, 54249628, 239683171, 491235070, 2139947788, 4444675456, 19125212575, 40190140696, 171064560433, 363227946394, 1531088393647
Offset: 0

Views

Author

Paul D. Hanna, Aug 03 2004

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 3*x/((1-9*x^2) + (3*x-1)*(1-9*x^2)^(2/3)) )); // G. C. Greubel, Sep 17 2019
    
  • Maple
    seq(coeff(series(3*x/((1-9*x^2) +(3*x-1)*(1-9*x^2)^(2/3)), x, n+2), x, n), n = 0..30); # G. C. Greubel, Sep 17 2019
  • Mathematica
    CoefficientList[Series[3*x/((1-9*x^2) +(3*x-1)*(1-9*x^2)^(2/3)), {x, 0, 30}], x] (* G. C. Greubel, Sep 17 2019 *)
  • PARI
    a(n)=polcoeff(3*x/((1-9*x^2)+(3*x-1)*(1-9*x^2+x^2*O(x^n))^(2/3)), n,x)
    
  • Sage
    def A097187_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P(3*x/((1-9*x^2) + (3*x-1)*(1-9*x^2)^(2/3))).list()
    A097187_list(30) # G. C. Greubel, Sep 17 2019

Formula

G.f.: A(x) = 3*x/((1-9*x^2) + (3*x-1)*(1-9*x^2)^(2/3)).
G.f.: A(x) = A004988(x^2)/(1 - x*A097188(x^2)).

A158111 E.g.f.: sm^-1(x) = Sum_{n>=0} a(n)*x^(3n+1)/(3n+1)!; a(n) = coefficient of x^(3n+1)/(3n+1)! in the Maclaurin expansion of the inverse of the Dixon elliptic function sm(x,0).

Original entry on oeis.org

1, 4, 400, 179200, 216832000, 552487936000, 2554704216064000, 19415752042086400000, 225960522265801523200000, 3818732826292045742080000000, 89923520593525093134499840000000, 2854532237720860556461562920960000000, 118891267701073842176624095657984000000000
Offset: 0

Views

Author

Paul D. Hanna, Mar 18 2009

Keywords

Comments

sm(x) = sm(x,0) satisfies: Integral_{y=0..sm(x,0)} dy/(1-y^3)^(2/3) = x.

Examples

			E.g.f.: 1/(1-x^3)^(2/3) = 1 + 4*x^3/3! + 400*x^6/6! + 179200*x^9/9! + ...
E.g.f.: sm^-1(x) = x + 4*x^4/4! + 400*x^7/7! + 179200*x^10/10! + ...
sm(x) = x - 4*x^4/4! + 160*x^7/7! - 20800*x^10/10! + 6476800*x^13/13! + ...
		

Crossrefs

Programs

  • Maple
    a(n):= mul(k-0^(mod(k,3)),k=1..3*n):seq(a(n), n = 0 .. 12);
    # Peter Bala, Feb 22 2015
  • Mathematica
    Join[{1},Table[Product[(3k-2)(3k-1)^2,{k,n}],{n,14}]] (* Harvey P. Dale, May 19 2012 *)
    a[k_] := Pochhammer[2/3, k] (3 k)!/k!; Array[a, 15, 0] (* Jan Mangaldan, Jan 06 2017 *)
  • PARI
    a(n)=prod(k=1,n,(3*k-2)*(3*k-1)^2)

Formula

a(n) = Product_{k=1..n} (3k-2)*(3k-1)^2 for n > 0 with a(0)=1.
E.g.f.: Sum_{n>=0} a(n)*x^(3m)/(3m)! = 1/(1-x^3)^(2/3).
From Peter Bala, Feb 22 2015: (Start)
a(n) = (n - 1/3)! * (3*n)!/( (-1/3)! * n! ).
a(n) = Product {k = 1..3*n} (k - 0^(k mod 3)), where we apply the usual convention that 0^0 = 1. Cf. A255406. (End)
a(n) ~ Gamma(1/3) * 3^(3*n + 1) * n^(3*n + 1/6) / (sqrt(2*Pi) * exp(3*n)). - Vaclav Kotesovec, Apr 10 2018

Extensions

More terms from Harvey P. Dale, May 19 2012

A216787 a(n) = Product_{k=1..n} (144 - 12/k).

Original entry on oeis.org

1, 132, 18216, 2550240, 359583840, 50917071744, 7230224187648, 1028757612985344, 146597959850411520, 20914642271992043520, 2986610916440463814656, 426813850967673556058112, 61034380688377318516310016, 8732611390798600956948971520, 1250010944797171165551838494720
Offset: 0

Views

Author

Michel Lagneau, Sep 16 2012

Keywords

Comments

This sequence is generalizable: Product_{k=1..n} (q^2 - q/k) = (q^n/n!) * Product_{k=0..n-1} (q*k + q-1) = expansion of (1- x*q^2)^((1-q)/q).

Crossrefs

Programs

  • Maple
    seq(product(144-12/k, k=1.. n), n=0..20);
    seq((12^n/n!)*product(12*k+11, k=0.. n-1), n=0..20);
  • Mathematica
    Join[{1},FoldList[Times,144-12/Range[20]]] (* Harvey P. Dale, Dec 22 2015 *)

Formula

From Amiram Eldar, Aug 17 2025: (Start)
a(n) = 144^n * Gamma(n+11/12) / (Gamma(11/12) * Gamma(n+1)).
a(n) ~ c * 144^n / n^(1/12), where c = 1/Gamma(11/12) = 0.947376... . (End)
Previous Showing 11-20 of 21 results. Next