A097186
Triangle read by rows in which row n gives coefficients of polynomial R_n(y) that satisfies R_n(1/3) = 3^n, where R_n(y) forms the initial (n+1) terms of g.f. A057083(y)^(n+1).
Original entry on oeis.org
1, 1, 6, 1, 9, 45, 1, 12, 78, 360, 1, 15, 120, 675, 2970, 1, 18, 171, 1134, 5859, 24948, 1, 21, 231, 1764, 10458, 51030, 212058, 1, 24, 300, 2592, 17334, 95256, 445824, 1817640, 1, 27, 378, 3645, 27135, 165726, 861597, 3905253, 15677145, 1, 30, 465, 4950, 40590, 272646, 1557765, 7760610, 34285680, 135868590
Offset: 0
Row polynomials evaluated at y=1/3 equals powers of 3:
3^1 = 1 + 6/3;
3^2 = 1 + 9/3 + 45/3^2;
3^3 = 1 + 12/3 + 78/3^2 + 360/3^3;
3^4 = 1 + 15/3 + 120/3^2 + 675/3^3 + 2970/3^4;
where A057083(y)^(n+1) has the same initial terms as the n-th row:
A057083(y) = 1 + 3y + 6y^2 + 9y^3 + 9y^4 + 0y^5 - 27y^6 +...
A057083(y)^2 = 1 + 6y +...
A057083(y)^3 = 1 + 9y + 45y^2 +...
A057083(y)^4 = 1 + 12y + 78y^2 + 360y^3 +...
A057083(y)^5 = 1 + 15y + 120y^2 + 675y^3 + 2970y^4 +...
Rows begin with n=0:
1;
1, 6;
1, 9, 45;
1, 12, 78, 360;
1, 15, 120, 675, 2970;
1, 18, 171, 1134, 5859, 24948;
1, 21, 231, 1764, 10458, 51030, 212058;
1, 24, 300, 2592, 17334, 95256, 445824, 1817640;
1, 27, 378, 3645, 27135, 165726, 861597, 3905253, 15677145; ...
-
Table[SeriesCoefficient[3y/((1-9xy) - (1-3y)*(1-9xy)^(2/3)), {x,0,n}, {y,0,k}], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 17 2019 *)
-
{T(n,k)=if(n==0,1,if(k==0,1,if(k==n, 3^n*(3^n -sum(j=0,n-1, T(n,j)/3^j)), polcoeff((Ser(vector(n,i,T(n-1,i-1)), x) +x*O(x^k))^((n+1)/n),k,x))))}
A383601
Expansion of 1/( (1-x) * (1-10*x)^2 )^(1/3).
Original entry on oeis.org
1, 7, 58, 514, 4705, 43879, 414208, 3943492, 37782346, 363760390, 3515819020, 34088616940, 331383573010, 3228590970430, 31514912933800, 308126549765440, 3016908101224105, 29576113797737695, 290271761086278610, 2851684765215491050, 28040613734007656545
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( 1/( (1-x) * (1-10*x)^2 )^(1/3))); // Vincenzo Librandi, May 05 2025
-
Table[Sum[(-9)^k* Binomial[-2/3,k]* Binomial[n,k],{k,0,n}],{n,0,22}] (* Vincenzo Librandi, May 05 2025 *)
-
a(n) = sum(k=0, n, (-9)^k*binomial(-2/3, k)*binomial(n, k));
A216705
a(n) = Product_{k=1..n} (81 - 9/k).
Original entry on oeis.org
1, 72, 5508, 429624, 33832890, 2679564888, 213025408596, 16981168285224, 1356370816782267, 108509665342581360, 8691624193940766936, 696910230823250585232, 55927046023565859464868, 4491372003738673637024784, 360913821729000560118063000
Offset: 0
-
seq(product(81-9/k, k=1.. n), n=0..20);
seq((9^n/n!)*product(9*k+8, k=0.. n-1), n=0..20);
-
Table[Product[81-9/k,{k,n}],{n,0,20}] (* Harvey P. Dale, Jul 20 2021 *)
A216706
a(n) = Product_{k=1..n} (100 - 10/k).
Original entry on oeis.org
1, 90, 8550, 826500, 80583750, 7897207500, 776558737500, 76546504125000, 7558967282343750, 747497875698437500, 74002289694145312500, 7332954160601671875000, 727184620926332460937500, 72159089307305298046875000, 7164366724082454591796875000
Offset: 0
-
seq(product(100-10/k, k=1.. n), n=0..20);
seq((10^n/n!)*product(10*k+9, k=0.. n-1), n=0..20);
A216786
a(n) = Product_{k=1..n} (121 - 11/k).
Original entry on oeis.org
1, 110, 12705, 1490720, 176277640, 20941783632, 2495562549480, 298041470195040, 35653210872081660, 4270462368900447720, 512028438031163681628, 61443412563739641795360, 7378329792029068652259480, 886534702703800402679177520, 106574136046464005550646840440
Offset: 0
-
seq(product(121-11/k, k=1.. n), n=0..20);
seq((11^n/n!)*product(11*k+10, k=0.. n-1), n=0..20);
A216786 := proc(n)
binomial(-10/11,n)*(-121)^n ;
end proc: # R. J. Mathar, Sep 17 2012
-
Join[{1},FoldList[Times,121-11/Range[20]]] (* Harvey P. Dale, Mar 15 2016 *)
A283151
Triangle read by rows: Riordan array (1/(1-9x)^(2/3), x/(9x-1)).
Original entry on oeis.org
1, 6, -1, 45, -15, 1, 360, -180, 24, -1, 2970, -1980, 396, -33, 1, 24948, -20790, 5544, -693, 42, -1, 212058, -212058, 70686, -11781, 1071, -51, 1, 1817640, -2120580, 848232, -176715, 21420, -1530, 60, -1, 15677145, -20902860, 9754668, -2438667, 369495, -35190, 2070, -69, 1, 135868590, -203802885
Offset: 0
Triangle begins
1;
6, -1;
45, -15, 1;
360, -180, 24, -1;
2970, -1980, 396, -33, 1;
24948, -20790, 5544, -693, 42, -1;
212058, -212058, 70686, -11781, 1071, -51, 1;
1817640, -2120580, 848232, -176715, 21420, -1530, 60, -1;
15677145, -20902860, 9754668, -2438667, 369495, -35190, 2070, -69, 1;
- Peter Bala, A 4-parameter family of embedded Riordan arrays
- Peter Bala, A note on the diagonals of a proper Riordan Array
- H. Prodinger, Some information about the binomial transform, The Fibonacci Quarterly, 32, 1994, 412-415.
- Thomas M. Richardson, The three 'R's and Dual Riordan Arrays, arXiv:1609.01193 [math.CO], 2016.
A097189
Row sums of triangle A097186, in which the n-th row polynomial R_n(y) is formed from the initial (n+1) terms of g.f. A057083(y)^(n+1), where R_n(1/3) = 3^n for all n >= 0.
Original entry on oeis.org
1, 7, 55, 451, 3781, 32131, 275563, 2378971, 20640907, 179791327, 1571002291, 13762897435, 120832716655, 1062818450155, 9363143224315, 82600459304203, 729572125425661, 6450872644562491, 57092964352312951, 505729048454449651
Offset: 0
-
List([0..30], n-> 1 + Sum([0..n-1], k-> Sum([0..n-k], j-> (-1)^(n-k-j)*3^j*Binomial(j, n-k-j)*Binomial(n+j, n) )) ); # G. C. Greubel, Sep 17 2019
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 3/((1-9*x) + 2*(1-9*x)^(2/3)) )); // G. C. Greubel, Sep 17 2019
-
seq(coeff(series(3/((1-9*x) + 2*(1-9*x)^(2/3)), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Sep 17 2019
-
CoefficientList[Series[3/((1-9*x) + 2*(1-9*x)^(2/3)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 04 2014 *)
-
a(n):=sum(sum(binomial(k,n-m-k)*3^k*(-1)^(n-m-k)*binomial(n+k,n),k,0,n-m),m,0,n-1)+1; /* Vladimir Kruchinin, Sep 09 2019 */
-
a(n)=polcoeff(3/((1-9*x)+2*(1-9*x+x*O(x^n))^(2/3)),n,x)
-
def A097189_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( 3/((1-9*x) + 2*(1-9*x)^(2/3)) ).list()
A097189_list(30) # G. C. Greubel, Sep 17 2019
A097187
Antidiagonal sums of triangle A097186, in which the n-th row polynomial R_n(y) is formed from the initial (n+1) terms of g.f. A057083(y)^(n+1), where R_n(1/3) = 3^n for all n>=0.
Original entry on oeis.org
1, 1, 7, 10, 58, 94, 499, 868, 4360, 7951, 38407, 72508, 339997, 659380, 3019639, 5984968, 26880052, 54249628, 239683171, 491235070, 2139947788, 4444675456, 19125212575, 40190140696, 171064560433, 363227946394, 1531088393647
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 3*x/((1-9*x^2) + (3*x-1)*(1-9*x^2)^(2/3)) )); // G. C. Greubel, Sep 17 2019
-
seq(coeff(series(3*x/((1-9*x^2) +(3*x-1)*(1-9*x^2)^(2/3)), x, n+2), x, n), n = 0..30); # G. C. Greubel, Sep 17 2019
-
CoefficientList[Series[3*x/((1-9*x^2) +(3*x-1)*(1-9*x^2)^(2/3)), {x, 0, 30}], x] (* G. C. Greubel, Sep 17 2019 *)
-
a(n)=polcoeff(3*x/((1-9*x^2)+(3*x-1)*(1-9*x^2+x^2*O(x^n))^(2/3)), n,x)
-
def A097187_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P(3*x/((1-9*x^2) + (3*x-1)*(1-9*x^2)^(2/3))).list()
A097187_list(30) # G. C. Greubel, Sep 17 2019
A158111
E.g.f.: sm^-1(x) = Sum_{n>=0} a(n)*x^(3n+1)/(3n+1)!; a(n) = coefficient of x^(3n+1)/(3n+1)! in the Maclaurin expansion of the inverse of the Dixon elliptic function sm(x,0).
Original entry on oeis.org
1, 4, 400, 179200, 216832000, 552487936000, 2554704216064000, 19415752042086400000, 225960522265801523200000, 3818732826292045742080000000, 89923520593525093134499840000000, 2854532237720860556461562920960000000, 118891267701073842176624095657984000000000
Offset: 0
E.g.f.: 1/(1-x^3)^(2/3) = 1 + 4*x^3/3! + 400*x^6/6! + 179200*x^9/9! + ...
E.g.f.: sm^-1(x) = x + 4*x^4/4! + 400*x^7/7! + 179200*x^10/10! + ...
sm(x) = x - 4*x^4/4! + 160*x^7/7! - 20800*x^10/10! + 6476800*x^13/13! + ...
-
a(n):= mul(k-0^(mod(k,3)),k=1..3*n):seq(a(n), n = 0 .. 12);
# Peter Bala, Feb 22 2015
-
Join[{1},Table[Product[(3k-2)(3k-1)^2,{k,n}],{n,14}]] (* Harvey P. Dale, May 19 2012 *)
a[k_] := Pochhammer[2/3, k] (3 k)!/k!; Array[a, 15, 0] (* Jan Mangaldan, Jan 06 2017 *)
-
a(n)=prod(k=1,n,(3*k-2)*(3*k-1)^2)
A216787
a(n) = Product_{k=1..n} (144 - 12/k).
Original entry on oeis.org
1, 132, 18216, 2550240, 359583840, 50917071744, 7230224187648, 1028757612985344, 146597959850411520, 20914642271992043520, 2986610916440463814656, 426813850967673556058112, 61034380688377318516310016, 8732611390798600956948971520, 1250010944797171165551838494720
Offset: 0
-
seq(product(144-12/k, k=1.. n), n=0..20);
seq((12^n/n!)*product(12*k+11, k=0.. n-1), n=0..20);
-
Join[{1},FoldList[Times,144-12/Range[20]]] (* Harvey P. Dale, Dec 22 2015 *)
Comments