cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 39 results. Next

A089986 Numbers n such that 4n + 7 is prime.

Original entry on oeis.org

-1, 0, 1, 3, 4, 6, 9, 10, 13, 15, 16, 18, 19, 24, 25, 30, 31, 33, 36, 39, 40, 43, 46, 48, 51, 54, 55, 58, 61, 64, 66, 69, 75, 76, 81, 85, 88, 90, 93, 94, 103, 106, 108, 109, 114, 115, 118, 120, 121, 123, 124, 129, 135, 139, 141, 145, 148, 150, 153, 156, 159, 160, 163, 169
Offset: 1

Views

Author

Giovanni Teofilatto, Jan 13 2004

Keywords

References

  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988.
  • Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta,UTET, CittaStudiEdizioni, Milano 1997.

Crossrefs

Cf. A005099 ((( Primes = -1 mod 4 ) + 1)/4), A005098 (4n+1 is prime), A095278 (4n+3 is prime), A111215 (4n+5 is prime).

Programs

Formula

a(n) = A005099(n) - 2 = A095278(n) - 1.

Extensions

Edited and extended by Klaus Brockhaus, Dec 22 2008

A173331 Second of two intermediate sequences for integral solution of A002144(n)=x^2+y^2.

Original entry on oeis.org

2, 2, 13, 2, 31, 4, 2, 55, 8, 81, 4, 91, 99, 105, 133, 10, 6, 2, 10, 181, 183, 227, 8, 237, 16, 10, 14, 265, 2, 301, 303, 16, 18, 8, 355, 379, 6, 381, 389, 14, 421, 429, 453, 451, 487, 20, 531, 543, 20, 24, 585, 24, 18, 16, 637, 631, 655, 12, 651, 675, 22, 731, 26, 741, 757
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 16 2010

Keywords

Comments

a(n) = A173330(n)*A010050(A005098(n)) mod A002144(n);
A002973(n) = MIN(a(n), A002144(n) - a(n)) / 2.

Examples

			n=7: A002144(7) = 53 = 4*13 + 1,
a(7) = A173330(7) * 26! mod 53 = 7*403291461126605635584000000 mod 53 = 2,
A002973(7) = MIN(2, 53 - 2) / 2 = 1;
n=8: A002144(8) = 61 = 4*15 + 1,
a(8) = A173330(8) * 30! mod 61 = 5*265252859812191058636308480000000 mod 61 = 55,
A002973(8) = MIN(55, 61 - 55) / 2 = 3.
		

References

  • H. Davenport, The Higher Arithmetic (Cambridge University Press 7th ed., 1999), ch. V.3, p.122.

Crossrefs

Formula

a(n) = ((2k)! / 2(k!))^2 mod p, where p = 4*k+1 = A002144(n).

A096029 Values (x+y-1)/2, where x^2+y^2=p runs over the Pythagorean primes A002144.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 5, 6, 7, 7, 8, 8, 7, 9, 9, 7, 8, 10, 9, 8, 11, 11, 10, 9, 12, 12, 12, 11, 12, 12, 13, 12, 10, 11, 14, 14, 13, 12, 14, 13, 15, 15, 16, 16, 12, 15, 14, 17, 17, 14, 17, 15, 17, 13, 15, 18, 14, 17, 19, 18, 19, 18, 16, 19, 18, 20, 16, 17, 20, 21, 21, 19, 20
Offset: 1

Views

Author

Lekraj Beedassy, Jun 16 2004

Keywords

Crossrefs

Formula

a(n)=(A079886(n) - 1)/2

Extensions

More terms from Ray Chandler, Jun 26 2004

A096030 Values (y-x-1)/2, where x^2+y^2=p,(xA002144.

Original entry on oeis.org

0, 0, 1, 1, 2, 0, 2, 0, 2, 1, 2, 4, 3, 0, 3, 1, 2, 5, 0, 2, 6, 6, 2, 5, 7, 1, 2, 5, 7, 0, 1, 3, 6, 4, 5, 3, 6, 9, 8, 0, 2, 6, 8, 4, 8, 4, 5, 2, 3, 11, 7, 9, 0, 1, 10, 4, 9, 5, 12, 10, 3, 12, 8, 0, 6, 2, 7, 11, 5, 8, 2, 12, 11, 4, 1, 2, 9, 7, 13, 12, 6, 0, 9, 14, 13, 10, 8, 15, 6, 1, 2, 3, 12, 14, 9, 0, 2
Offset: 1

Views

Author

Lekraj Beedassy, Jun 16 2004

Keywords

Crossrefs

Formula

a(n)=(A079887(n) - 1)/2.

Extensions

More terms from Ray Chandler, Jun 26 2004

A111215 Numbers k such that 4k + 5 is prime.

Original entry on oeis.org

0, 2, 3, 6, 8, 9, 12, 14, 17, 21, 23, 24, 26, 27, 33, 36, 38, 42, 44, 47, 48, 56, 57, 59, 63, 66, 68, 69, 72, 77, 78, 83, 86, 87, 92, 96, 98, 99, 101, 104, 107, 111, 113, 114, 126, 129, 134, 138, 141, 143, 147, 149, 152, 153, 159, 162, 164, 167, 168, 174, 176, 182, 188
Offset: 1

Views

Author

Parthasarathy Nambi, Oct 24 2005

Keywords

Examples

			If k=99 then 4k + 5 = 401 (prime).
		

Crossrefs

Programs

Formula

a(n) = A005098(n) - 1. - Daniel Starodubtsev, Feb 10 2020

A173330 First of two intermediate sequences for integral solution of A002144(n)=x^2+y^2.

Original entry on oeis.org

1, 10, 1, 5, 1, 5, 46, 5, 70, 5, 9, 1, 106, 106, 126, 142, 146, 13, 9, 186, 1, 214, 13, 226, 1, 13, 9, 5, 17, 13, 306, 9, 5, 17, 366, 17, 378, 1, 406, 406, 17, 442, 21, 442, 5, 510, 21, 538, 13, 1, 570, 5, 17, 598, 25, 13, 25, 650, 1, 5, 694, 706, 9, 742, 25, 17, 786, 5, 25
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 16 2010

Keywords

Comments

A002972(n) = MIN(a(n), A002144(n) - a(n)).

Examples

			n=7: A002144(7) = 53 = 4*13 + 1,
a(7) = 26! / (2*(13!)^2) mod 53 = 403291461126605635584000000/77551576087265280000 mod 53 = 5200300 mod 53 = 46,
A002972(7) = MIN(46, 53 - 46) = 7;
n=8: A002144(8) = 61 = 4*15 + 1,
a(8) = 30! / (2*(15!)^2) mod 61 = 265252859812191058636308480000000/3420024505448398848000000 mod 61 = 77558760 mod 61 = 5,
A002972(8) = MIN(5, 61 - 5) = 5.
		

References

  • H. Davenport, The Higher Arithmetic (Cambridge University Press 7th ed., 1999), ch. V.3, p.122.

Crossrefs

Formula

a(n) = (2k)! / 2(k!)^2 mod p, where p = 4*k+1 = A002144(n).

A094896 If 4*n+1 is prime and 4*n+3 is not prime then a(n)=4*n+1, else a(n)=0.

Original entry on oeis.org

0, 0, 0, 13, 0, 0, 0, 0, 0, 37, 0, 0, 0, 53, 0, 61, 0, 0, 73, 0, 0, 0, 89, 0, 97, 0, 0, 109, 113, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 157, 0, 0, 0, 173, 0, 181, 0, 0, 193, 0, 0, 0, 0, 0, 0, 0, 0, 229, 233, 0, 241, 0, 0, 0, 257, 0, 0, 0, 0, 277, 0, 0, 0, 293, 0, 0, 0, 0, 313, 317, 0, 0, 0, 0, 337, 0, 0
Offset: 0

Views

Author

Roger L. Bagula, Jun 14 2004

Keywords

Crossrefs

Programs

  • Magma
    [IsPrime(4*n+1) and not IsPrime(4*n+3) select 4*n+1 else 0:n in [0..86]]; // Marius A. Burtea, Nov 15 2019
  • Maple
    A094896 := proc(n)
        if isprime(4*n+1) and not isprime(4*n+3) then
            4*n+1;
        else
            0;
        end if;
    end proc:
    seq(A094896(n),n=0..86) ; # R. J. Mathar, Nov 15 2019
  • Mathematica
    a=Table[If[PrimeQ[4*n+1]==True&&PrimeQ[4*n+3]==False, 4*n+1, 0], {n, 0, 200}]

A119681 Odd numbers n such that 2n-1 is prime.

Original entry on oeis.org

3, 7, 9, 15, 19, 21, 27, 31, 37, 45, 49, 51, 55, 57, 69, 75, 79, 87, 91, 97, 99, 115, 117, 121, 129, 135, 139, 141, 147, 157, 159, 169, 175, 177, 187, 195, 199, 201, 205, 211, 217, 225, 229, 231, 255, 261, 271, 279, 285, 289, 297, 301, 307, 309, 321, 327, 331
Offset: 1

Views

Author

Roger L. Bagula, Jun 12 2006

Keywords

Comments

a(k) appears in the o.g.f. for floor(A002144(k)*n^2/4), for k >=1: x*(b(k)*(1 + x^2) + a(k)*x)/((1 - x)^3*(1 + x)), together with b(k) = (A002144(k)-1)/4 = A005098(k). - Wolfdieter Lang, Aug 07 2013

Programs

Formula

a(n) = (A002144(n) + 1)/2, n >= 1. - Wolfdieter Lang, Aug 07 2013

Extensions

Edited by N. J. A. Sloane, Sep 07 2006

A163366 a(n) = (-1)^floor((prime(n)+2)/2) mod prime(n).

Original entry on oeis.org

1, 1, 4, 1, 1, 12, 16, 1, 1, 28, 1, 36, 40, 1, 1, 52, 1, 60, 1, 1, 72, 1, 1, 88, 96, 100, 1, 1, 108, 112, 1, 1, 136, 1, 148, 1, 156, 1, 1, 172, 1, 180, 1, 192, 196, 1, 1, 1, 1, 228, 232, 1, 240, 1, 256, 1, 268, 1, 276, 280, 1, 292, 1, 1, 312, 316, 1, 336, 1, 348, 352, 1, 1, 372, 1
Offset: 1

Views

Author

Peter Luschny, Jul 25 2009

Keywords

Comments

Remove the '1's from the sequence to get A152680.
Product modulo p of the quadratic residues of p, where p = prime(n). [Jonathan Sondow, May 14 2010]

Examples

			a(4) = 1 because the quadratic residues of prime(4) = 7 are 1, 2, and 4, and 1*2*4 = 8 == 1 (mod 7). - _Jonathan Sondow_, May 14 2010
		

References

  • Carl-Erik Froeberg, On sums and products of quadratic residues, BIT, Nord. Tidskr. Inf.-behandl. 11 (1971) 389-398. [Jonathan Sondow, May 14 2010]

Crossrefs

Programs

  • Maple
    seq((-1)^iquo(ithprime(i)+2,2) mod ithprime(i),i=1..113);
  • Mathematica
    Table[Mod[ Apply[Times, Flatten[Position[ Table[JacobiSymbol[i, Prime[n]], {i, 1, Prime[n] - 1}], 1]]], Prime[n]], {n, 1, 80}] (* Jonathan Sondow, May 14 2010 *)

Formula

a(n)*A177863(n) == -1 (mod prime(n)), by Wilson's theorem. - Jonathan Sondow, May 14 2010
a(n) = A177860(n) modulo prime(n). - Jonathan Sondow, May 14 2010

A055131 Those composite s for which A055095[s] = 2.

Original entry on oeis.org

15, 39, 51, 87, 111, 123, 159, 183, 219, 267, 291, 303, 327, 339, 411, 447, 471, 519, 543, 579, 591, 687, 699, 723, 771, 807, 831, 843, 879, 939, 951, 1011, 1047, 1059, 1119, 1167, 1191, 1203, 1227, 1263, 1299, 1347, 1371, 1383, 1527, 1563, 1623, 1671
Offset: 0

Views

Author

Antti Karttunen, Apr 04 2000

Keywords

Programs

  • Maple
    find_A055095_is_2_composites := proc(upto_n) local j,a; a := []; for j from 1 to upto_n do if(-1 = (j - wt(GrayCode(qrs2bincode((2*j)+1))))) then if(not isprime((2*j)+1)) then a := [op(a),((2*j)+1)]; fi; fi; od; RETURN(a); end;
  • Mathematica
    A005811[n_] := Length[Length /@ Split[IntegerDigits[n, 2]]];
    A055094[n_] := With[{rr = Table[Mod[k^2, n], {k, 1, n-1}] // Union}, Boole[MemberQ[rr, #]] & /@ Range[n-1]] // FromDigits[#, 2]&;
    A055095[1] = 0; A055095[n_] := 2*A005811[A055094[n]] - (n-1);
    A055131 = Position[Array[A055095, 2000], 2] // Flatten // Select[#, CompositeQ]& (* Jean-François Alcover, Mar 06 2016 *)

Formula

a(n) = 3*((4*A005098[n])+1) = 3*A002144[n] ??? (Conjecture, not yet proved)

Extensions

More terms from James Sellers, Apr 21 2000
Previous Showing 21-30 of 39 results. Next