cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A156128 a(n) = 6^n * Catalan(n).

Original entry on oeis.org

1, 6, 72, 1080, 18144, 326592, 6158592, 120092544, 2401850880, 48997757952, 1015589892096, 21327387734016, 452796847276032, 9702789584486400, 209580255024906240, 4558370546791710720, 99747873141559787520, 2194453209114315325440, 48508965675158549299200
Offset: 0

Views

Author

Philippe Deléham, Feb 04 2009

Keywords

Comments

Number of Dyck n-paths with two types of up step and three types of down step. - David Scambler, Jun 21 2013

Crossrefs

Programs

  • Magma
    [6^n*Catalan(n): n in [0..20]]; // Vincenzo Librandi, Jul 19 2011
  • Maple
    A156128_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
    for w from 1 to n do a[w] := 6*(a[w-1]+add(a[j]*a[w-j-1],j=1..w-1)) od;convert(a,list)end: A156128_list(16); # Peter Luschny, May 19 2011
  • Mathematica
    Table[CatalanNumber[n]6^n, {n, 0, 16}] (* Alonso del Arte, Jul 19 2011 *)

Formula

a(n) = 6^n * A000108(n).
From Gary W. Adamson, Jul 18 2011: (Start)
a(n) is the upper left term in M^n, M = an infinite square production matrix:
6, 6, 0, 0, 0, 0, ...
6, 6, 6, 0, 0, 0, ...
6, 6, 6, 6, 0, 0, ...
6, 6, 6, 6, 6, 0, ...
... (End)
E.g.f.: KummerM(1/2, 2, 24*x). - Peter Luschny, Aug 26 2012
G.f.: c(6*x) with c(x) the o.g.f. of A000108 (Catalan). - Philippe Deléham, Nov 15 2013
a(n) = Sum{k=0..n} A085880(n,k) * 5^k. - Philippe Deléham, Nov 15 2013
G.f.: 1/(1 - 6*x/(1 - 6*x/(1 - 6*x/(1 - ...)))), a continued fraction. - Ilya Gutkovskiy, Aug 08 2017
Sum_{n>=0} 1/a(n) = 588/529 + 864*arctan(1/sqrt(23)) / (529*sqrt(23)). - Vaclav Kotesovec, Nov 23 2021
Sum_{n>=0} (-1)^n/a(n) = 564/625 - 432*log(3/2) / 3125. - Amiram Eldar, Jan 25 2022
D-finite with recurrence (n+1)*a(n) +12*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Mar 21 2022

A156266 a(n) = 7^n*Catalan(n).

Original entry on oeis.org

1, 7, 98, 1715, 33614, 705894, 15529668, 353299947, 8243665430, 196199237234, 4744454282204, 116239129913998, 2879153833254412, 71978845831360300, 1813866914950279560, 46026872966863343835, 1175038992212864189670
Offset: 0

Views

Author

Philippe Deléham, Feb 07 2009

Keywords

Crossrefs

Programs

  • Magma
    [7^n*Catalan(n): n in [0..20]]; // Vincenzo Librandi, Jul 19 2011
  • Maple
    A156266_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
    for w from 1 to n do a[w] := 7*(a[w-1]+add(a[j]*a[w-j-1],j=1..w-1)) od;convert(a,list)end: A156266_list(16); # Peter Luschny, May 19 2011
  • Mathematica
    Table[7^n * CatalanNumber[n], {n, 0, 16}] (* Amiram Eldar, Jan 25 2022 *)

Formula

a(n) = 7^n*A000108(n).
From Gary W. Adamson, Jul 18 2011: (Start)
a(n) is the upper left term in M^n, M = an infinite square production matrix:
7, 7, 0, 0, 0, 0, ...
7, 7, 7, 0, 0, 0, ...
7, 7, 7, 7, 0, 0, ...
7, 7, 7, 7, 7, 0, ...
... (End)
E.g.f.: KummerM(1/2, 2, 28*x). - Peter Luschny, Aug 26 2012
G.f.: c(7*x) with c(x) the o.g.f. of A000108 (Catalan). - Philippe Deléham, Nov 15 2013
a(n) = Sum_{k=0..n} A085880(n,k)*6^k. - Philippe Deléham, Nov 15 2013
G.f.: 1/(1 - 7*x/(1 - 7*x/(1 - 7*x/(1 - ...)))), a continued fraction. - Ilya Gutkovskiy, Aug 08 2017
Sum_{n>=0} 1/a(n) = 266/243 + 392*arctan(1/(3*sqrt(3))) / (729*sqrt(3)). - Vaclav Kotesovec, Nov 23 2021
Sum_{n>=0} (-1)^n/a(n) = 770/841 - 1176*arctanh(1/sqrt(29)) / (841*sqrt(29)). - Amiram Eldar, Jan 25 2022
D-finite with recurrence (n+1)*a(n) +14*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Mar 21 2022

Extensions

a(15) corrected by Vincenzo Librandi, Jul 19 2011

A337167 a(n) = 1 + 3 * Sum_{k=0..n-1} a(k) * a(n-k-1).

Original entry on oeis.org

1, 4, 25, 199, 1795, 17422, 177463, 1870960, 20241403, 223438852, 2506596547, 28494103183, 327507800725, 3799735202218, 44440058006593, 523388751658831, 6201937444137619, 73888034816382820, 884517283667145259, 10634234680321209373, 128347834921058404249
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 28 2021

Keywords

Comments

Binomial transform of A005159.

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = 1 + 3 Sum[a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 20}]
    Table[Sum[Binomial[n, k] 3^k CatalanNumber[k], {k, 0, n}], {n, 0, 20}]
    Table[Hypergeometric2F1[1/2, -n, 2, -12], {n, 0, 20}]
  • PARI
    {a(n) = sum(k=0, n, 3^k*binomial(n, k)*(2*k)!/(k!*(k+1)!))} \\ Seiichi Manyama, Jan 31 2021
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(2/(1-x+sqrt((1-x)*(1-13*x)))) \\ Seiichi Manyama, Feb 01 2021

Formula

G.f. A(x) satisfies: A(x) = 1 / (1 - x) + 3*x*A(x)^2.
G.f.: (1 - sqrt(1 - 12*x / (1 - x))) / (6*x).
E.g.f.: exp(7*x) * (BesselI(0,6*x) - BesselI(1,6*x)).
a(n) = Sum_{k=0..n} binomial(n,k) * 3^k * Catalan(k).
a(n) = 2F1([1/2, -n], [2], -12), where 2F1 is the hypergeometric function.
D-finite with recurrence (n+1) * a(n) = 2 * (7*n-3) * a(n-1) - 13 * (n-1) * a(n-2) for n > 1. - Seiichi Manyama, Jan 31 2021
a(n) ~ 13^(n + 3/2) / (8 * 3^(3/2) * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 14 2021

A025226 a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ...+ a(n-1)*a(1) for n >= 2. Also a(n) = 3^n*C(n-1), where C = A000108 (Catalan numbers).

Original entry on oeis.org

3, 9, 54, 405, 3402, 30618, 288684, 2814669, 28146690, 287096238, 2975361012, 31241290626, 331638315876, 3553267670100, 38375290837080, 417331287853245, 4566095267100210
Offset: 1

Views

Author

Keywords

Comments

Total number of rows in all Kleene truth tables for bracketed implication with n distinct variables. See Yildiz link. - Michel Marcus, Oct 21 2020

Examples

			a(3) = 3^3*C(2) = 27*2 = 54.
		

Crossrefs

Programs

  • Magma
    [3^n*Catalan(n-1): n in [1..30]]; // G. C. Greubel, May 20 2022
    
  • Mathematica
    Rest[CoefficientList[Series[(1-Sqrt[1-12x])/2,{x,0,20}],x]]  (* Harvey P. Dale, Mar 09 2011 *)
  • PARI
    a(n)=polcoeff((1-sqrt(1-12*x+x*O(x^n)))/2,n)
    
  • SageMath
    [3^n*catalan_number(n-1) for n in (1..30)] # G. C. Greubel, May 20 2022

Formula

a(n) = Sum_{j=1..n-1} a(j)*a(n-j), with a(1) = 3.
a(n) = 3^n * A000108(n-1).
G.f.: (1-sqrt(1-12*x))/2. - Michael Somos, Jun 08 2000
Given g.f. C(x) and given A(x)= g.f. of A100239, then B(x) = A(x) - (1+2*x) satisfies B(x) = x - C(x*B(x)). - Michael Somos, Sep 07 2005
G.f.: (1 - U(0))/x where U(k)= 1 - 3*x/U(k+1) ; (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 30 2012
D-finite with recurrence: n*a(n) +6*(3-2*n)*a(n-1) = 0. - R. J. Mathar, Nov 12 2012
a(n) = 3^n/(4*n-2)*binomial(2*n,n). - Vaclav Kotesovec, Oct 11 2013

A156270 a(n) = 8^n*Catalan(n).

Original entry on oeis.org

1, 8, 128, 2560, 57344, 1376256, 34603008, 899678208, 23991418880, 652566593536, 18034567675904, 504967894925312, 14294475794808832, 408413594137395200, 11762311511156981760, 341107033823552471040, 9952299339793060331520
Offset: 0

Views

Author

Philippe Deléham, Feb 07 2009

Keywords

Comments

A quarter of the count of And/Or-Trees with 2 variables [Chauvin]. - R. J. Mathar, Apr 01 2012

Crossrefs

Programs

Formula

a(n) = 8^n*A000108(n).
From Gary W. Adamson, Jul 18 2011: (Start)
a(n) is the upper left term in M^n, M = an infinite square production matrix:
8, 8, 0, 0, 0, 0, ...
8, 8, 8, 0, 0, 0, ...
8, 8, 8, 8, 0, 0, ...
8, 8, 8, 8, 8, 0, ...
... (End)
E.g.f.: KummerM(1/2, 2, 32*x). - Peter Luschny, Aug 26 2012
G.f.: c(8*x) with c(x) the o.g.f. of A000108 (Catalan). - Philippe Deléham, Nov 15 2013
a(n) = Sum_{k=0..n} A085880(n,k)*7^k. - Philippe Deléham, Nov 15 2013
G.f.: 1/(1 - 8*x/(1 - 8*x/(1 - 8*x/(1 - ...)))), a continued fraction. - Ilya Gutkovskiy, Aug 08 2017
(n+1)*a(n) +16*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Apr 14 2018
Sum_{n>=0} 1/a(n) = 1040/961 + 1536*arctan(1/sqrt(31)) / (961*sqrt(31)). - Vaclav Kotesovec, Nov 23 2021
Sum_{n>=0} (-1)^n/a(n) = 112/121 - 512*arctanh(1/sqrt(33)) / (363*sqrt(33)). - Amiram Eldar, Jan 25 2022
D-finite with recurrence +(n+1)*a(n) +16*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Mar 21 2022

A098399 a(n) = 3^n*binomial(2*n+1, n).

Original entry on oeis.org

1, 9, 90, 945, 10206, 112266, 1250964, 14073345, 159497910, 1818276174, 20827527084, 239516561466, 2763652632300, 31979409030900, 370961144758440, 4312423307816865, 50227047938102310, 585982225944526950, 6846739692614999100, 80106854403595489470, 938394580156404305220
Offset: 0

Views

Author

Paul Barry, Sep 06 2004

Keywords

Crossrefs

Programs

  • Magma
    [3^n*Binomial(2*n+1, n): n in [ 0..20]]; // Vincenzo Librandi, Nov 24 2012
    
  • Maple
    Z:=(1-sqrt(1-3*z))*4^n/sqrt(1-3*z)/6: Zser:=series(Z, z=0, 32): seq(coeff(Zser, z, n), n=1..18); # Zerinvary Lajos, Jan 01 2007
  • Mathematica
    Table[3^n Binomial[2n+1,n], {n,0,20}] (* Harvey P. Dale, Mar 28 2012 *)
  • PARI
    a(n)=binomial(2*n+1,n)*3^n \\ Charles R Greathouse IV, Oct 23 2023
    
  • SageMath
    [3^n*binomial(2*n+1, n) for n in range(21)] # G. C. Greubel, Dec 27 2023

Formula

G.f.: (1-sqrt(1-12*x))/(6*x*sqrt(1-12*x)).
E.g.f.: a(n) = n!* [x^n] exp(6*x)*(BesselI(0, 6*x) + BesselI(1, 6*x)). - Peter Luschny, Aug 25 2012
(n+1)*a(n) - 6*(2*n+1)*a(n-1) = 0. - R. J. Mathar, Nov 24 2012
From G. C. Greubel, Dec 27 2023: (Start)
a(n) = 3^n * (2*n+1)*A000108(n).
a(n) = (2*n+1)*A005159(n).
a(n) = 3^n * A001700(n). (End)
From Amiram Eldar, Jan 16 2024: (Start)
Sum_{n>=0} 1/a(n) = 6/11 + 72*arcsin(1/(2*sqrt(3)))/(11*sqrt(11)).
Sum_{n>=0} (-1)^n/a(n) = 6/13 + 72*arcsinh(1/(2*sqrt(3)))/(13*sqrt(13)). (End)

A156273 a(n) = 9^n*Catalan(n).

Original entry on oeis.org

1, 9, 162, 3645, 91854, 2480058, 70150212, 2051893701, 61556811030, 1883638417518, 58564030799196, 1844766970174674, 58748732742485772, 1888352123865614100, 61182608813245896840, 1996082612532147384405, 65518476340761072970470, 2162109719245115408025510
Offset: 0

Views

Author

Philippe Deléham, Feb 07 2009

Keywords

Crossrefs

Programs

  • Magma
    [9^n*Catalan(n): n in [0..20]]; // Vincenzo Librandi, Jul 19 2011
  • Mathematica
    Table[9^n CatalanNumber[n],{n,0,20}] (* Harvey P. Dale, Sep 09 2012 *)

Formula

a(n) = 9^n*A000108(n).
From Gary W. Adamson, Jul 18 2011: (Start)
a(n) is the upper left term in M^n, M = an infinite square production matrix:
9, 9, 0, 0, 0, 0, ...
9, 9, 9, 0, 0, 0, ...
9, 9, 9, 9, 0, 0, ...
9, 9, 9, 9, 9, 0, ...
... (End)
E.g.f.: KummerM(1/2, 2, 36*x). - Peter Luschny, Aug 26 2012
G.f.: c(9*x) with c(x) the o.g.f. of A000108 (Catalan). - Philippe Deléham, Nov 15 2013
a(n) = Sum{k=0..n} A085880(n,k)*8^k. - Philippe Deléham, Nov 15 2013
G.f.: 1/(1 - 9*x/(1 - 9*x/(1 - 9*x/(1 - ...)))), a continued fraction. - Ilya Gutkovskiy, Aug 08 2017
Sum_{n>=0} 1/a(n) = 1314/1225 + 1944*arctan(1/sqrt(35)) / (1225*sqrt(35)). - Vaclav Kotesovec, Nov 23 2021
Sum_{n>=0} (-1)^n/a(n) = 1278/1369 - 1944*arctanh(1/sqrt(37)) / (1369*sqrt(37)). - Amiram Eldar, Jan 25 2022
D-finite with recurrence (n+1)*a(n) +18*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Mar 21 2022

A337169 a(n) = (-1)^n + 3 * Sum_{k=0..n-1} a(k) * a(n-k-1).

Original entry on oeis.org

1, 2, 13, 89, 691, 5720, 49555, 443630, 4071595, 38105342, 362271823, 3488988101, 33967656469, 333752559392, 3305347855573, 32960499084305, 330664662067795, 3335002912108670, 33796042027030855, 343940115478559699, 3513702627928096681, 36021007341027948032
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 28 2021

Keywords

Comments

Inverse binomial transform of A005159.

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = (-1)^n + 3 Sum[a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 21}]
    Table[Sum[(-1)^(n - k) Binomial[n, k] 3^k CatalanNumber[k], {k, 0, n}], {n, 0, 21}]
    Table[(-1)^n Hypergeometric2F1[1/2, -n, 2, 12], {n, 0, 21}]

Formula

G.f. A(x) satisfies: A(x) = 1 / (1 + x) + 3*x*A(x)^2.
G.f.: (1 - sqrt(1 - 12*x / (1 + x))) / (6*x).
E.g.f.: exp(5*x) * (BesselI(0,6*x) - BesselI(1,6*x)).
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * 3^k * Catalan(k).
a(n) ~ 11^(n + 3/2) / (8 * 3^(3/2) * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Nov 13 2021

A156275 a(n) = 10^n*Catalan(n).

Original entry on oeis.org

1, 10, 200, 5000, 140000, 4200000, 132000000, 4290000000, 143000000000, 4862000000000, 167960000000000, 5878600000000000, 208012000000000000, 7429000000000000000, 267444000000000000000, 9694845000000000000000, 353576700000000000000000
Offset: 0

Views

Author

Philippe Deléham, Feb 07 2009

Keywords

Comments

In general, for m >= 1, Sum_{k>=0} 1/(m^k * Catalan(k)) = 2*m*(8*m + 1) / (4*m - 1)^2 + 24 * m^2 * arcsin(1/(2*sqrt(m))) / (4*m - 1)^(5/2). - Vaclav Kotesovec, Nov 23 2021

Crossrefs

Programs

  • Magma
    [10^n*Catalan(n): n in [0..20]]; // Vincenzo Librandi, Jul 19 2011
  • Mathematica
    Table[10^n CatalanNumber[n],{n,0,20}] (* Harvey P. Dale, Mar 12 2013 *)

Formula

a(n) = 10^n*A000108(n).
From Gary W. Adamson, Jul 18 2011: (Start)
a(n) is the upper left term in M^n, M = an infinite square production matrix:
10, 10, 0, 0, 0, ...
10, 10, 10, 0, 0, ...
10, 10, 10, 10, 0, ...
10, 10, 10, 10, 10, ...
... (End)
E.g.f.: KummerM(1/2, 2, 40*x). - Peter Luschny, Aug 26 2012
G.f.: c(10*x) with c(x) the o.g.f. of A000108 (Catalan). - Philippe Deléham, Nov 15 2013
a(n) = Sum_{k=0..n} A085880(n,k)*9^k. - Philippe Deléham, Nov 15 2013
G.f.: 1/(1 - 10*x/(1 - 10*x/(1 - 10*x/(1 - ...)))), a continued fraction. - Ilya Gutkovskiy, Aug 08 2017
Sum_{n>=0} 1/a(n) = 180/169 + 800*arctan(1/sqrt(39)) / (507*sqrt(39)). - Vaclav Kotesovec, Nov 23 2021
Sum_{n>=0} (-1)^n/a(n) = 1580/1681 - 2400*arctanh(1/sqrt(41)) / (1681*sqrt(41)). - Amiram Eldar, Jan 25 2022
D-finite with recurrence (n+1)*a(n) +20*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Mar 21 2022

Extensions

a(15) corrected by Vincenzo Librandi, Jul 19 2011

A217363 Series reversion of x - 3*x^3.

Original entry on oeis.org

1, 3, 27, 324, 4455, 66339, 1041012, 16953624, 283848543, 4855304025, 84482290035, 1490628232080, 26607713942628, 479621100042756, 8718235759397880, 159628084420459248, 2941328850997439439, 54501093415540789605, 1014898739548854163185
Offset: 1

Views

Author

R. J. Mathar, Oct 01 2012

Keywords

Comments

Regular zeros in the reverted sequence have been left out: If y = x - 3*x^3, then x = y + 3*y^3 + 27*y^5 + 324*y^7 + 4455*y^9 + 66339*y^11 + ...
Number of lattice paths that do not go below the x-axis from (0,0) to (3n,0) using steps D(1,-1) and three types of U(1,2). - David Scambler, Jun 22 2013

Crossrefs

Cf. A005159 (revert x-3*x^2), A153231 (revert x-2*x^3).

Programs

  • Maple
    f:= k -> (3*k-3)!*3^(k-1)/(k-1)!/(2*k-1)!:
    map(f, [$1..30]); # Robert Israel, May 07 2017
  • Mathematica
    CoefficientList[Series[2/3 Sqrt[z] Sin[ArcSin[(9 Sqrt[z])/2]/3], {z, 0, 20}], z](* Benedict W. J. Irwin, Jul 12 2016 *)

Formula

D-finite with recurrence (2*n-1)*(2*n-2)*a(n) - 9*(3*n-4)*(3*n-5)*a(n-1) = 0.
a(n) = 3^(n-1)*A001764(n-1).
From Benedict W. J. Irwin, Jul 12 2016: (Start)
G.f.: (2/3)*sqrt(x)*sin(asin(9*sqrt(x)/2)/3).
E.g.f.: x*2F2(1/3,2/3;3/2,2;81*x/4). (End)
a(n) ~ 3^(4*n - 7/2)*4^(-n)*n^(-3/2)/sqrt(Pi). - Ilya Gutkovskiy, Jul 12 2016
Previous Showing 11-20 of 30 results. Next