cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 153 results. Next

A086903 a(n) = 8*a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 8.

Original entry on oeis.org

2, 8, 62, 488, 3842, 30248, 238142, 1874888, 14760962, 116212808, 914941502, 7203319208, 56711612162, 446489578088, 3515205012542, 27675150522248, 217885999165442, 1715412842801288, 13505416743244862, 106327921103157608
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Sep 21 2003

Keywords

Comments

a(n+1)/a(n) converges to (4+sqrt(15)) = 7.872983... a(0)/a(1)=2/8; a(1)/a(2)=8/62; a(2)/a(3)=62/488; a(3)/a(4)=488/3842; ... etc. Lim a(n)/a(n+1) as n approaches infinity = 0.127016... = 1/(4+sqrt(15)) = (4-sqrt(15)).
Twice A001091. - John W. Layman, Sep 25 2003
Except for the first term, positive values of x (or y) satisfying x^2 - 8xy + y^2 + 60 = 0. - Colin Barker, Feb 13 2014

Examples

			a(4) = 3842 = 8*a(3) - a(2) = 8*488 - 62 = (4+sqrt(15))^4 + (4-sqrt(15))^4 = 3841.9997397 + 0.0002603 = 3842.
		

Crossrefs

Programs

  • Magma
    I:=[2,8]; [n le 2 select I[n] else 8*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 15 2014
  • Mathematica
    a[0] = 2; a[1] = 8; a[n_] := 8a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 19}] (* Robert G. Wilson v, Jan 30 2004 *)
    CoefficientList[Series[(2 - 8 x)/(1 - 8 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 15 2014 *)
    LinearRecurrence[{8,-1},{2,8},30] (* Harvey P. Dale, Jan 18 2015 *)
  • Sage
    [lucas_number2(n,8,1) for n in range(27)] # Zerinvary Lajos, Jun 25 2008
    

Formula

a(n) = (4+sqrt(15))^n + (4-sqrt(15))^n.
G.f.: (2-8*x)/(1-8*x+x^2). [Philippe Deléham, Nov 02 2008]
From Peter Bala, Jan 06 2013: (Start)
Let F(x) = product {n = 0..inf} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let alpha = 4 - sqrt(15). This sequence gives the simple continued fraction expansion of 1 + F(alpha) = 2.12474 84992 41370 33639 ... = 2 + 1/(8 + 1/(62 + 1/(488 + ...))). Cf. A174502 and A005248.
Also F(-alpha) = 0.87474 74663 84045 35032 ... has the continued fraction representation 1 - 1/(8 - 1/(62 - 1/(488 - ...))) and the simple continued fraction expansion 1/(1 + 1/((8-2) + 1/(1 + 1/((62-2) + 1/(1 + 1/((488-2) + 1/(1 + ...))))))).
F(alpha)*F(-alpha) has the simple continued fraction expansion 1/(1 + 1/((8^2-4) + 1/(1 + 1/((62^2-4) + 1/(1 + 1/((488^2-4) + 1/(1 + ...))))))).
(End)

A099016 a(n) = 3*L(2*n)/5 - (-1)^n/5, where L = A000032.

Original entry on oeis.org

1, 2, 4, 11, 28, 74, 193, 506, 1324, 3467, 9076, 23762, 62209, 162866, 426388, 1116299, 2922508, 7651226, 20031169, 52442282, 137295676, 359444747, 941038564, 2463670946, 6449974273, 16886251874, 44208781348, 115740092171
Offset: 0

Views

Author

Paul Barry, Sep 22 2004

Keywords

Comments

Let M = an infinite triangle with (1,2,2,3,3,4,4,...) as the left border and all other columns = (0,1,2,3,4,5,...). Then lim_{n->infinity} M^n = A099016, the left-shifted vector considered as a sequence. - Gary W. Adamson, Jul 26 2010

Crossrefs

Cf. A000032.

Programs

  • Magma
    [3*Lucas(2*n)/5-(-1)^n/5: n in [0..35]]; // Vincenzo Librandi, Jun 09 2011
    
  • Magma
    F:=Fibonacci; [F(n+1)^2+F(n)*F(n-2): n in [0..30]]; // Bruno Berselli, Feb 15 2017
    
  • Maple
    with(combinat):seq(3*fibonacci(n)^2+(-1)^n, n= 0..27)
  • Mathematica
    CoefficientList[Series[(1 - 2*x^2)/((1 + x)*(1 - 3*x + x^2)), {x,0,50}], x] (* G. C. Greubel, Dec 31 2017 *)
  • PARI
    x='x+O('x^30); Vec((1 - 2*x^2)/((1 + x)*(1 - 3*x + x^2))) \\ G. C. Greubel, Dec 31 2017

Formula

G.f.: (1 - 2*x^2)/((1 + x)*(1 - 3*x + x^2)).
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
a(n) = 2*F(n)^2 + F(n)*F(n-1) + F(n-1)^2, where F = A000045.
a(n) = 3*((3/2 - sqrt(5)/2)^n + (3/2 + sqrt(5)/2)^n)/5 - (-1)^n/5.
a(n) = A099015(n)/F(n+1).
a(n) = 3*A005248(n)/5 - (-1)^n/5.
a(n) = 3*A000032(2*n)/5 - (-1)^n/5.
a(n) = A061646(n) + F(n)^2.
a(n) = 3*F(n)^2 + (-1)^n.
a(n) = F(n+1)^2 + F(n)*F(n-2). See also A192914, fourth formula. - Bruno Berselli, Feb 15 2017

A134571 Array T(n,k) by antidiagonals; T(n,k) = position in row n of k-th occurrence of the Fibonacci number F(2n) in A134567.

Original entry on oeis.org

1, 3, 2, 4, 7, 5, 6, 10, 18, 13, 8, 15, 26, 47, 34, 9, 20, 39, 68, 123, 89, 11, 23, 52, 102, 178, 322, 233
Offset: 1

Views

Author

Clark Kimberling, Nov 02 2007

Keywords

Comments

(Row 1) = A000201, the lower Wythoff sequence (Row 2) = (Column 2 of Wythoff array) = A035336 (Row 3) = (Column 4 of Wythoff array) = A035338 (Row 4) = (Column 6 of Wythoff array) = A035340 (Column 1) = A001519 (bisection of Fibonacci sequence) (Column 2) = A005248 (bisection of Lucas sequence) (Column 3) = A052995 Row 1 is the ordered union of all odd-numbered columns of the Wythoff array; and A134571 is a permutation of the positive integers.
It looks like this array is A080164 transposed. - Peter Munn, Sep 02 2025

Examples

			Northwest corner:
1 3 4 6 8 9 11 12 14 16
2 7 10 15 20 23
5 18 26 39 52 60
13 47 68 102 136 157
Row 1 consists of numbers k such that 1 is the least m for which {-m*tau}<{k*tau}, where tau=(1+sqrt(5))/2 and {} denotes fractional part.
		

Crossrefs

A195720 Decimal expansion of arccos(sqrt(1/6)) and of arcsin(sqrt(5/6)) and arctan(sqrt(5)).

Original entry on oeis.org

1, 1, 5, 0, 2, 6, 1, 9, 9, 1, 5, 1, 0, 9, 3, 1, 4, 9, 1, 3, 4, 3, 0, 5, 9, 1, 7, 5, 7, 2, 6, 5, 3, 6, 0, 6, 8, 7, 4, 7, 5, 4, 5, 3, 0, 6, 8, 6, 7, 6, 3, 3, 3, 0, 0, 5, 9, 8, 2, 1, 0, 8, 9, 3, 8, 0, 7, 8, 6, 3, 5, 5, 1, 4, 0, 4, 9, 3, 5, 8, 1, 9, 0, 5, 4, 7, 5, 0, 4, 1, 0, 2, 4, 5, 2, 6, 6, 0, 1, 7
Offset: 1

Views

Author

Clark Kimberling, Sep 23 2011

Keywords

Examples

			arccos(sqrt(1/6)) = 1.150261991510931...
		

Crossrefs

Programs

  • Magma
    [Arccos(Sqrt(1/6))]; // G. C. Greubel, Nov 23 2017
  • Mathematica
    r = Sqrt[1/6]; RealDigits[ArcCos[r], 10, 100][[1]]
  • PARI
    atan(sqrt(5)) \\ Michel Marcus, Mar 29 2016
    

Formula

Equals Sum_{k >= 1} sqrt(5)/L(2n) where L=A000032. See also A005248. - Michel Marcus, Mar 29 2016

A215465 a(n) = (Lucas(4n) - Lucas(2n))/4.

Original entry on oeis.org

0, 1, 10, 76, 540, 3751, 25840, 177451, 1217160, 8344876, 57202750, 392089501, 2687463360, 18420257701, 126254611990, 865362736876, 5931286406640, 40653646980451, 278644255208560, 1909856172864751, 13090349042248500
Offset: 0

Views

Author

R. J. Mathar, Aug 11 2012

Keywords

Comments

This is a divisibility sequence, that is, if n | m then a(n) | a(m). However, it is not a strong divisibility sequence. It is the case k = 3 of a 1-parameter family of 4th-order linear divisibility sequences with o.g.f. x*(1 - x^2)/( (1 - k*x + x^2)*(1 - (k^2 - 2)*x + x^2) ). Compare with A000290 (case k = 2) and A085695 (case k = -3). - Peter Bala, Jan 17 2014
In general, for distinct integers r and s with r = s (mod 2), the sequence Lucas(r*n) - Lucas(s*n) is a fourth-order divisibility sequence. See A273622 for the case r = 3, s = 1. - Peter Bala, May 27 2016

Examples

			a(3) = 76 because the 12th (4 * 3rd) Lucas number is 22, the 6th (2 * 3rd) Lucas number is 18, and (322 - 18)/4 = 304/4 = 76.
		

Crossrefs

Programs

  • Magma
    [(Lucas(4*n) - Lucas(2*n))/4: n in [0..20]]; // Vincenzo Librandi, Dec 23 2012
    
  • Maple
    A215465 := proc(n)
        (A000032(4*n)-A000032(2*n))/4 ;
    end proc:
  • Mathematica
    Table[(LucasL[4n] - LucasL[2n])/4, {n, 0, 19}] (* Alonso del Arte, Aug 11 2012 *)
    CoefficientList[Series[-x*(x-1)*(1+x)/((x^2 - 7*x + 1)* (x^2 - 3*x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 23 2012 *)
    LinearRecurrence[{10,-23,10,-1},{0,1,10,76},50] (* G. C. Greubel, Jun 02 2016 *)
  • PARI
    {a(n) = my(w = quadgen(5)^(2*n)); (2*real(w^2-w) + imag(w^2-w))/4}; /* Michael Somos, Dec 29 2022 */

Formula

4*a(n) = A000032(4*n) - A000032(2*n).
a(n) = A056854(n)/4 - A005248(n)/4.
G.f.: -x*(x-1)*(1+x) / ( (x^2-7*x+1)*(x^2-3*x+1) ).
a(n) = 10*a(n-1) - 23*a(n-2) + 10*a(n-3) - a(n-4). - G. C. Greubel, Jun 02 2016
a(n) = 2^(-2-n)*((7-3*sqrt(5))^n-(3-sqrt(5))^n-(3+sqrt(5))^n+(7+3*sqrt(5))^n). - Colin Barker, Jun 02 2016
a(n) = a(-n) for all n in Z. - Michael Somos, Dec 29 2022

A236331 Positive integers n such that x^2 - 18xy + y^2 + n = 0 has integer solutions.

Original entry on oeis.org

64, 256, 320, 576, 704, 1024, 1216, 1280, 1600, 1856, 1984, 2304, 2624, 2816, 2880, 3136, 3520, 3776, 3904, 4096, 4544, 4864, 5056, 5120, 5184, 5696, 6080, 6336, 6400, 6464, 6976, 7424, 7744, 7936, 8000, 8384, 8896, 9216, 9280, 9536, 9664, 9920, 10496, 10816
Offset: 1

Views

Author

Colin Barker, Feb 16 2014

Keywords

Examples

			64 is in the sequence because x^2 - 18xy + y^2 + 64 = 0 has integer solutions, for example (x, y) = (1, 13).
		

Crossrefs

Cf. A001519 (n = 64), A052995 (n = 256), A055819 (n = 256), A005248 (n = 320), A237132 (n = 704), A237133 (n = 1216).

A237133 Values of x in the solutions to x^2 - 3xy + y^2 + 19 = 0, where 0 < x < y.

Original entry on oeis.org

4, 5, 7, 11, 17, 28, 44, 73, 115, 191, 301, 500, 788, 1309, 2063, 3427, 5401, 8972, 14140, 23489, 37019, 61495, 96917, 160996, 253732, 421493, 664279, 1103483, 1739105, 2888956, 4553036, 7563385, 11920003, 19801199, 31206973, 51840212, 81700916, 135719437
Offset: 1

Views

Author

Colin Barker, Feb 04 2014

Keywords

Comments

The corresponding values of y are given by a(n+2).
Positive values of x (or y) satisfying x^2 - 18xy + y^2 + 1216 = 0.

Examples

			11 is in the sequence because (x, y) = (11, 28) is a solution to x^2 - 3xy + y^2 + 19 = 0.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,3,0,-1},{4,5,7,11},40] (* Harvey P. Dale, Dec 15 2014 *)
  • PARI
    Vec(-x*(x-1)*(4*x^2+9*x+4)/((x^2-x-1)*(x^2+x-1)) + O(x^100))

Formula

a(n) = 3*a(n-2)-a(n-4).
G.f.: -x*(x-1)*(4*x^2+9*x+4) / ((x^2-x-1)*(x^2+x-1)).
a(n) = (1/2) * (F(n+4) + (-1)^n*F(n-5)), n>4, with F the Fibonacci numbers (A000045). - Ralf Stephan, Feb 05 2014

A292612 a(n) = F(n)^2 + 4*(-1)^n = F(n+3)*F(n-3), where F = A000045.

Original entry on oeis.org

4, -3, 5, 0, 13, 21, 68, 165, 445, 1152, 3029, 7917, 20740, 54285, 142133, 372096, 974173, 2550405, 6677060, 17480757, 45765229, 119814912, 313679525, 821223645, 2149991428, 5628750621, 14736260453, 38580030720, 101003831725, 264431464437, 692290561604, 1812440220357
Offset: 0

Views

Author

Bruno Berselli, Sep 20 2017

Keywords

Comments

This is the case k=3 of the identity F(n)^2 - F(k)^2*(-1)^(n+k) = F(n+k)*F(n-k), known also as Catalan's identity.

Crossrefs

Cf. A000045, A001622, A005248: Lucas(2*n), A001654: F(n)*F(n+1).
Cf. A007598 (k=0), A059929 (k=1, without initial 1), A192883 (k=2, without initial -1), this sequence (k=3).

Programs

  • GAP
    List([0..10^2],n ->Fibonacci(n)^2+4*(-1)^n); # Muniru A Asiru, Sep 26 2017
  • Magma
    [Fibonacci(n)^2+4*(-1)^n: n in [0..40]];
    
  • Maple
    with(combinat,fibonacci):  A292612:=seq(fibonacci(n)^2+4*(-1)^n, n=0..10^2); # Muniru A Asiru, Sep 26 2017
  • Mathematica
    Table[Fibonacci[n]^2 + 4 (-1)^n, {n, 0, 40}]
  • PARI
    for(n=0, 40, print1(fibonacci(n)^2+4*(-1)^n", "));
    
  • PARI
    Vec((4-11*x+3*x^2)/((1+x)*(1-3*x+x^2))+O(x^30)) \\ Colin Barker, Sep 20 2017
    
  • Sage
    [fibonacci(n)^2+4*(-1)^n for n in range(40)]
    

Formula

G.f.: (4 - 11*x + 3*x^2)/((1 + x)*(1 - 3*x + x^2)).
a(n) = a(-n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
a(n) = 4*A001654(n+1) - 11*A001654(n) + 3*A001654(n-1) with A001654(-1)=0.
5*a(n) = Lucas(2*n) + 18*(-1)^n. Note that Lucas(2*n) + r*(-1)^n is divisible by 5 for r = -2, 3, -7, 8, -12, 13, -17, 18, -22, 23, -27, ... = (-1/4)*(3 + 5*(2*m+1)*(-1)^m) = (-1)^m*A047221(m). On the other hand, a(n) is divisible by 5 when n is a member of A047221.
a(n) = (1/5)*(18*(-1)^n + ((3-sqrt(5))/2)^n + ((3+sqrt(5))/2)^n). - Colin Barker, Sep 20 2017
Sum_{n>=4} 1/a(n) = 143/960. - Amiram Eldar, Oct 05 2020
Sum_{n>=4} (-1)^n/a(n) = 3/(4*phi) - 407/960, where phi is the golden ratio (A001622). - Amiram Eldar, Oct 06 2020

A335673 Composite integers m such that A003500(m) == 4 (mod m).

Original entry on oeis.org

10, 209, 230, 231, 399, 430, 455, 530, 901, 903, 923, 989, 1295, 1729, 1855, 2015, 2211, 2345, 2639, 2701, 2795, 2911, 3007, 3201, 3439, 3535, 3801, 4823, 5291, 5719, 6061, 6767, 6989, 7421, 8569, 9503, 9591, 9869, 9890, 10439, 10609, 11041, 11395, 11951, 11991
Offset: 1

Views

Author

Ovidiu Bagdasar, Jun 17 2020

Keywords

Comments

If p is a prime, then A003500(p)==4 (mod p).
This sequence contains the composite integers for which the congruence holds.
The generalized Pell-Lucas sequences of integer parameters (a,b) defined by V(n+2)=a*V(n+1)-b*V(n) and V(0)=2, V(1)=a, satisfy the identity V(p)==a (mod p) whenever p is prime and b=-1,1.
For a=4, b=1, V(n)=A003500(n).

Examples

			m=10 is the first composite integer for which A003500(m)==4 (mod m).
		

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (to appear, 2020).

Crossrefs

Cf. A005248, A335669 (a=3,b=-1), A335672 (a=3,b=1), A335674 (a=5,b=1).
A330206 is the subsequence of odd terms.

Programs

  • Mathematica
    Select[Range[3, 20000], CompositeQ[#] && Divisible[Round@LucasL[2#, Sqrt[2]] - 4, #] &] (* Amiram Eldar, Jun 18 2020 *)
  • PARI
    my(M=[1,2;1,3]); forcomposite(m=5, 10^5, if(trace(Mod(M,m)^m)==4, print1(m,", "))); \\ Joerg Arndt, Jun 18 2020

Extensions

More terms from Joerg Arndt, Jun 18 2020

A335674 Odd composite integers m such that A003501(m) == 5 (mod m).

Original entry on oeis.org

15, 21, 35, 105, 161, 195, 255, 345, 385, 399, 465, 527, 551, 609, 741, 897, 1105, 1295, 1311, 1807, 1919, 2001, 2015, 2071, 2085, 2121, 2415, 2737, 2915, 3289, 3815, 4031, 4033, 4355, 4879, 4991, 5291, 5777, 5983, 6049, 6061, 6083, 6479, 6601, 6785, 7645, 7905, 8695, 8855, 8911, 9361, 9591, 9889
Offset: 1

Views

Author

Ovidiu Bagdasar, Jun 17 2020

Keywords

Comments

If p is a prime, then A003501(p)==5 (mod p).
This sequence contains the odd composite integers for which the congruence holds.
The generalized Pell-Lucas sequences of integer parameters (a,b) defined by V(n+2)=a*V(n+1)-b*V(n) and V(0)=2, V(1)=a, satisfy the identity V(p)==a (mod p) whenever p is prime and b=-1,1.
For a=5, b=1, V(n) recovers A003501(n).

Examples

			15 is the first odd composite integer for which the relation A003501(15)=16098445550==5 (mod 15) holds.
		

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (to appear, 2020).

Crossrefs

Cf. A005248, A335669 (a=3,b=-1), A335672 (a=3,b=1), A335673 (a=4,b=1).

Programs

  • Mathematica
    Select[Range[3, 5000, 2], CompositeQ[#] && Divisible[2*ChebyshevT[#, 5/2] - 5, #] &] (* Amiram Eldar, Jun 18 2020 *)
Previous Showing 81-90 of 153 results. Next