A059098
Triangle read by rows. T(n, k) = Sum_{i=0..n} Stirling2(n, i)*Product_{j=1..k} (i - j + 1) for 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 2, 3, 2, 5, 10, 12, 6, 15, 37, 62, 60, 24, 52, 151, 320, 450, 360, 120, 203, 674, 1712, 3120, 3720, 2520, 720, 877, 3263, 9604, 21336, 33600, 34440, 20160, 5040, 4140, 17007, 56674, 147756, 287784, 394800, 352800, 181440, 40320, 21147, 94828
Offset: 0
Triangle begins:
[0] [ 1]
[1] [ 1, 1]
[2] [ 2, 3, 2]
[3] [ 5, 10, 12, 6]
[4] [15, 37, 62, 60, 24]
[5] [52, 151, 320, 450, 360, 120]
[6] [203, 674, 1712, 3120, 3720, 2520, 720]
...;
E.g.f. for T(n, 2) = (exp(x)-1)^2*(exp(exp(x)-1)) = x^2 + 2*x^3 + 31/12*x^4 + 8/3*x^5 + 107/45*x^6 + 343/180*x^7 + 28337/20160*x^8 + 349/360*x^9 + ...;
E.g.f. for T(n, 3) = (exp(x)-1)^3*(exp(exp(x)-1)) = x^3 + 5/2*x^4 + 15/4*x^5 + 13/3*x^6 + 127/30*x^7 + 1759/480*x^8 + 34961/12096*x^9 + ...
-
T := proc(n, k) option remember; `if`(k < 0 or k > n, 0,
`if`(n = 0, 1, k*T(n-1, k-1) + (k+1)*T(n-1, k) + T(n-1, k+1)))
end:
seq(print(seq(T(n, k), k = 0..n)), n = 0..15); # Peter Bala, Oct 15 2023
A095675
Triangle read by rows, formed from product of Aitken's (or Bell's) triangle (A011971) and Pascal's triangle (A007318).
Original entry on oeis.org
1, 3, 2, 10, 13, 5, 37, 72, 55, 15, 151, 393, 450, 245, 52, 674, 2202, 3365, 2748, 1166, 203, 3263, 12850, 24582, 26781, 17048, 5936, 877, 17007, 78488, 180477, 245971, 208856, 109107, 32243, 4140, 94828, 502327, 1349900, 2209695, 2346559, 1634998
Offset: 0
Triangle begins:
1
3 2
10 13 5
37 72 55 15
151 393 450 245 52
-
a[0, 0] = 1; a[n_, 0] := a[n - 1, n - 1]; a[n_, k_] := a[n, k] = If[k < n + 1, a[n, k - 1] + a[n - 1, k - 1], 0]; p[n_, r_] := If[r <= n + 1, Binomial[n, r], 0]; am = Table[ a[n, r], {n, 0, 9}, {r, 0, 9}]; pm = Table[p[n, r], {n, 0, 9}, {r, 0, 9}]; t = Flatten[am.pm]; Delete[ t, Position[t, 0]] (* Robert G. Wilson v, Jul 12 2004 *)
Original entry on oeis.org
0, 1, 10, 11, 12, 100, 101, 102, 110, 111, 112, 120, 121, 122, 123, 1000, 1001, 1002, 1010, 1011, 1012, 1020, 1021, 1022, 1023, 1100, 1101, 1102, 1110, 1111, 1112, 1120, 1121, 1122, 1123, 1200, 1201, 1202, 1203, 1210, 1211, 1212, 1213, 1220, 1221, 1222
Offset: 0
-
bag := {} ;
for i from 0 to 99999 do
bag := bag union {A123895(i)} ;
end do:
sort(convert(bag,list)) ; # R. J. Mathar, Dec 10 2015
-
f[n_] := Block[{d = Prepend[IntegerDigits@ n, 0], a, b, w}, b = DeleteDuplicates@ d; a = Range[0, Length@ b]; w = FromDigits@ Flatten[Part[a, FirstPosition[b, #]] & /@ d]; w]; Union@ Table[f@n, {n, 0, 10^4}] (* Michael De Vlieger, Dec 09 2015, Version 10 *)
A191099
5th differences of Bell numbers.
Original entry on oeis.org
11, 52, 255, 1335, 7432, 43833, 272947, 1788850, 12303997, 88586135, 666047210, 5218287687, 42518759887, 359651145332, 3152929344235, 28603584325827, 268159523175744, 2594608337127709, 25878365376280647, 265770087291261082, 2807571511844891521
Offset: 0
A225591
a(n) = B(n+3) - 6*B(n+2) + 8*B(n+1)*B(n+1) - B(n), where the B(i) are Bell numbers (A000110).
Original entry on oeis.org
0, 16, 160, 1686, 21276, 328498, 6149136, 137105016, 3577543452, 107601726030, 3683660206080, 142035221781402, 6113719409724768, 291540411275223912, 15300594717301253800, 878667035554110785662, 54932693182800769213284
Offset: 0
-
[Bell(n+3)-6*Bell(n+2)+8*Bell(n+1)*Bell(n+1)-Bell(n): n in [0..20]]; // Vincenzo Librandi, Jul 16 2013
-
Table[BellB[n+3] - 6 BellB[n+2] + 8 BellB[n+1] BellB[n+1] - BellB[n], {n, 0, 20}] (* Vincenzo Librandi, Jul 16 2013 *)
#[[4]]-6#[[3]]+8#[[2]]^2-#[[1]]&/@Partition[BellB[Range[0,20]],4,1] (* Harvey P. Dale, Nov 01 2016 *)
-
B(n) = if (n<=1, return (1), return (sum(i=0, n-1, binomial(n-1, i)*B(n-1-i))))
a(n) = B(n+3) - 6*B(n+2) + 8*B(n+1)*B(n+1) - B(n)
A226506
a(n) = B(n+2)-3*B(n+1)+B(n), where B(i) are the Bell numbers A000110.
Original entry on oeis.org
0, 0, 2, 12, 62, 320, 1712, 9604, 56674, 351792, 2293862, 15682216, 112179608, 837905016, 6522165834, 52807401908, 443962338894, 3869376656384, 34908008426360, 325530083655692, 3133830448212442, 31106728455899128, 318009567467999574, 3344865730200667832, 36161434396223563504
Offset: 0
-
[Bell(n+2)-3*Bell(n+1)+Bell(n): n in [0..30]]; // Vincenzo Librandi, Jul 16 2013
-
Table[BellB[n+2] - 3 BellB[n+1] + BellB[n], {n, 0, 30}] (* Vincenzo Librandi, Jul 16 2013 *)
#[[3]]-3#[[2]]+#[[1]]&/@Partition[BellB[Range[0,30]],3,1] (* Harvey P. Dale, Aug 26 2021 *)
A269952
Triangle read by rows, T(n,k) = Sum_{j=0..n} (-1)^(n-j)*C(-j,-n)*S2(j,k), S2 the Stirling set numbers A048993, for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 4, 5, 1, 0, 8, 19, 9, 1, 0, 16, 65, 55, 14, 1, 0, 32, 211, 285, 125, 20, 1, 0, 64, 665, 1351, 910, 245, 27, 1, 0, 128, 2059, 6069, 5901, 2380, 434, 35, 1, 0, 256, 6305, 26335, 35574, 20181, 5418, 714, 44, 1
Offset: 0
1,
0, 1,
0, 2, 1,
0, 4, 5, 1,
0, 8, 19, 9, 1,
0, 16, 65, 55, 14, 1,
0, 32, 211, 285, 125, 20, 1,
0, 64, 665, 1351, 910, 245, 27, 1.
Variant:
A143494 (the main entry for this triangle).
-
A269952 := (n,k) -> Stirling2(n+1, k+1) - Stirling2(n, k+1):
seq(seq(A269952(n,k), k=0..n), n=0..9);
-
Flatten[ Table[ Sum[(-1)^(n-j) Binomial[-j,-n] StirlingS2[j,k], {j,0,n}], {n,0,9}, {k,0,n}]]
A339030
T(n, k) = Sum_{p in P(n, k)} card(p), where P(n, k) is the set of set partitions of {1,2,...,n} where the largest block has size k and card(p) is the number of blocks of p. Triangle T(n, k) for 0 <= k <= n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 3, 6, 1, 0, 4, 24, 8, 1, 0, 5, 85, 50, 10, 1, 0, 6, 300, 280, 75, 12, 1, 0, 7, 1071, 1540, 525, 105, 14, 1, 0, 8, 3976, 8456, 3570, 840, 140, 16, 1, 0, 9, 15219, 47208, 24381, 6552, 1260, 180, 18, 1
Offset: 0
Triangle starts:
0: [1]
1: [0, 1]
2: [0, 2, 1]
3: [0, 3, 6, 1]
4: [0, 4, 24, 8, 1]
5: [0, 5, 85, 50, 10, 1]
6: [0, 6, 300, 280, 75, 12, 1]
7: [0, 7, 1071, 1540, 525, 105, 14, 1]
8: [0, 8, 3976, 8456, 3570, 840, 140, 16, 1]
9: [0, 9, 15219, 47208, 24381, 6552, 1260, 180, 18, 1]
.
T(4,0) = 0 = 0*card({})
T(4,1) = 4 = 4*card({1|2|3|4}).
T(4,2) = 24 = 3*card({12|3|4, 13|2|4, 1|23|4, 14|2|3, 1|24|3, 1|2|34})
+ 2*card({12|34, 13|24, 14|23}).
T(4,3) = 8 = 2*card({123|4, 124|3, 134|2, 1|234}).
T(4,4) = 1 = 1*card({1234}).
.
Seen as the projection of a 2-dimensional statistic this is, for n = 6:
[ 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 6]
[ 0 0 0 45 180 75 0]
[ 0 0 20 180 80 0 0]
[ 0 0 30 45 0 0 0]
[ 0 0 12 0 0 0 0]
[ 0 1 0 0 0 0 0]
The row sum projection gives row 6 of this triangle, and the column sum projection gives [0, 1, 62, 270, 260, 75, 6], which appears in a decapitated version as row 5 in A321331.
Cf.
A005493 with 1 prepended are the row sums.
-
def A339030Row(n):
if n == 0: return [1]
M = matrix(n + 1)
for k in (1..n):
for p in SetPartitions(n):
if p.max_block_size() == k:
M[k, len(p)] += p.cardinality()
return [sum(M[k, j] for j in (0..n)) for k in (0..n)]
for n in (0..9): print(A339030Row(n))
A346842
E.g.f.: exp(exp(x) - 1) * (exp(x) - 1)^3 / 3!.
Original entry on oeis.org
1, 10, 75, 520, 3556, 24626, 174805, 1279240, 9677151, 75750752, 613656836, 5142797660, 44557627661, 398786697398, 3683575764083, 35084121263136, 344242894197456, 3476490965903174, 36104281709286841, 385257741260565844, 4220537246457019687, 47432055430482106880
Offset: 3
-
b:= proc(n, m) option remember;
`if`(n=0, binomial(m, 3), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=3..24); # Alois P. Heinz, Aug 05 2021
-
nmax = 24; CoefficientList[Series[Exp[Exp[x] - 1] (Exp[x] - 1)^3/3!, {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 3] &
Table[Sum[StirlingS2[n, k] Binomial[k, 3], {k, 0, n}], {n, 3, 24}]
Table[Sum[Binomial[n, k] StirlingS2[k, 3] BellB[n - k], {k, 0, n}], {n, 3, 24}]
Table[(BellB[n+3] - 6*BellB[n+2] + 8*BellB[n+1] - BellB[n])/6, {n, 3, 24}] (* Vaclav Kotesovec, Aug 06 2021 *)
-
my(x='x+O('x^25)); Vec(serlaplace(exp(exp(x)-1)*(exp(x)-1)^3/3!)) \\ Michel Marcus, Aug 06 2021
A346843
E.g.f.: exp(exp(x) - 1) * (exp(x) - 1)^4 / 4!.
Original entry on oeis.org
1, 15, 155, 1400, 11991, 101031, 853315, 7300260, 63641006, 567304452, 5181338526, 48538121450, 466611951261, 4603782469653, 46613101232933, 484188586821376, 5157850655391981, 56321812548867229, 630125374420189131, 7219368394888423554, 84658119388335562972
Offset: 4
-
b:= proc(n, m) option remember;
`if`(n=0, binomial(m, 4), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=4..24); # Alois P. Heinz, Aug 05 2021
-
nmax = 24; CoefficientList[Series[Exp[Exp[x] - 1] (Exp[x] - 1)^4/4!, {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 4] &
Table[Sum[StirlingS2[n, k] Binomial[k, 4], {k, 0, n}], {n, 4, 24}]
Table[Sum[Binomial[n, k] StirlingS2[k, 4] BellB[n - k], {k, 0, n}], {n, 4, 24}]
Table[(BellB[n] - 24*BellB[n+1] + 29*BellB[n+2] - 10*BellB[n+3] + BellB[n+4])/24, {n, 4, 24}] (* Vaclav Kotesovec, Aug 06 2021 *)
With[{nn=30},Drop[CoefficientList[Series[(Exp[Exp[x]-1](Exp[x]-1)^4)/4!,{x,0,nn}],x] Range[0,nn]!,4]] (* Harvey P. Dale, Oct 03 2024 *)
-
my(x='x+O('x^25)); Vec(serlaplace(exp(exp(x)-1)*(exp(x)-1)^4/4!)) \\ Michel Marcus, Aug 06 2021
Comments