cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 178 results. Next

A321323 Numbers k such that k^(2^20) + 1 is prime (a generalized Fermat prime).

Original entry on oeis.org

1, 919444, 1059094, 1951734, 1963736, 3843236
Offset: 1

Views

Author

Jeppe Stig Nielsen, Nov 04 2018

Keywords

Crossrefs

Extensions

a(4) from Jeppe Stig Nielsen, Aug 31 2022
a(5) from Jeppe Stig Nielsen, Oct 21 2022
a(6) from Jeppe Stig Nielsen, Jan 11 2025

A078402 Numbers k such that k^2 + 5 is prime.

Original entry on oeis.org

0, 6, 12, 36, 48, 72, 78, 96, 114, 126, 162, 168, 198, 204, 246, 258, 294, 336, 342, 372, 414, 432, 456, 462, 492, 504, 516, 534, 552, 576, 588, 594, 624, 666, 714, 726, 756, 768, 786, 792, 798, 804, 834, 852, 876, 888, 918, 954, 996
Offset: 1

Views

Author

Cino Hilliard, Dec 26 2002

Keywords

Comments

The sum of the reciprocals of the primes generated from these indices converges to 0.2332142.. The sum of the reciprocals of these indices cannot be computed.
All terms are divisible by 6. - Zak Seidov, Dec 27 2014

Crossrefs

For the primes see A056905(n).
Other sequences of the type "Numbers k such that k^2 + i is prime": A005574 (i=1), A067201 (i=2), A049422 (i=3), A007591 (i=4), this sequence (i=5), A114269 (i=6), A114270 (i=7), A114271 (i=8), A114272 (i=9), A114273 (i=10), A114274 (i=11), A114275 (i=12).

Programs

  • Magma
    [n: n in [0..1000]| IsPrime(n^2+5)]; // Vincenzo Librandi, Jul 15 2012
  • Mathematica
    Select[Range[0,1000],PrimeQ[#^2+5]&] (* Vincenzo Librandi, Jul 13 2012 *)
  • PARI
    for(n=0,10^4,q=n^2+5;if(isprime(q),print1(n,", ")));
    

Formula

a(n) = 6 * A056906(n).

Extensions

Offset corrected by Arkadiusz Wesolowski, Aug 09 2011

A134406 Composite numbers of the form k^2 + 1.

Original entry on oeis.org

10, 26, 50, 65, 82, 122, 145, 170, 226, 290, 325, 362, 442, 485, 530, 626, 730, 785, 842, 901, 962, 1025, 1090, 1157, 1226, 1370, 1445, 1522, 1682, 1765, 1850, 1937, 2026, 2117, 2210, 2305, 2402, 2501, 2602, 2705, 2810, 3026, 3250, 3365, 3482, 3601, 3722, 3845
Offset: 1

Views

Author

Jani Melik, Jan 18 2008

Keywords

Comments

Square roots of these numbers are quadratic irrationals and corresponding chain fraction representations are periodic: sqrt(10) = [3;{2,3}], sqrt(26) = [5;{2,5}], sqrt(50) = [7;{2,7}], ..., where {} is denoted a period (we write {6} == {2,3}).

Examples

			10 is a term because 10 = 3^2 + 1 is composite,
26 is a term because 26 = 5^2 + 1 is composite,
50 is a term because 50 = 7^2 + 1 is composite.
		

Crossrefs

Supersequence of A144255.

Programs

  • Maple
    ts_fn1:=proc(n) local i,tren,ans; ans:=[ ]: for i from 1 to n do tren := i^(2)+1: if (isprime(tren) = false) then ans:=[ op(ans), tren ]: fi od: RETURN(ans) end: ts_fn1(200);
  • Mathematica
    Select[Range[70]^2+1,!PrimeQ[#]&] (* Harvey P. Dale, Aug 12 2012 *)
  • PARI
    for(n=3,99, if(!isprime(t=n^2+1), print1(t", "))) \\ Charles R Greathouse IV, Aug 29 2016
    
  • Python
    from sympy import isprime
    from itertools import count, takewhile
    def aupto(limit):
        form = takewhile(lambda x: x <= limit, (k**2+1 for k in count(1)))
        return [number for number in form if not isprime(number)]
    print(aupto(3845)) # Michael S. Branicky, Oct 26 2021

Formula

a(n) = 1 + A134407(n)^2. - R. J. Mathar, Oct 13 2019

A083844 Number of primes of the form x^2 + 1 < 10^n.

Original entry on oeis.org

2, 4, 10, 19, 51, 112, 316, 841, 2378, 6656, 18822, 54110, 156081, 456362, 1339875, 3954181, 11726896, 34900213, 104248948, 312357934, 938457801, 2826683630, 8533327397, 25814570672, 78239402726, 237542444180, 722354138859, 2199894223892
Offset: 1

Views

Author

Harry J. Smith, May 05 2003

Keywords

Comments

It is conjectured that there are infinitely many primes of the form x^2 + 1 (and thus this sequence never becomes constant), but this has not been proved.
These primes can be found quickly using a sieve based on the fact that numbers of this form have at most one primitive prime factor (A005529). The sum of the reciprocals of these primes is 0.81459657... - T. D. Noe, Oct 14 2003

Examples

			a(3) = 10 because the only primes or the form x^2 + 1 < 10^3 are the ten primes: 2, 5, 17, 37, 101, 197, 257, 401, 577, 677.
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 17.
  • P. Ribenboim, The Little Book of Big Primes. Springer-Verlag, 1991, p. 190.

Crossrefs

Cf. A005529 (primitive prime factors of the sequence k^2+1).

Programs

  • Mathematica
    c = 1; k = 2; (* except for the initial prime 2, all X's must be odd. *) Do[ While[ k^2 + 1 < 10^n, If[ PrimeQ[k^2 + 1], c++ ]; k += 2]; Print[c], {n, 1, 20}]

Extensions

Edited by Robert G. Wilson v, May 08 2003
More terms from T. D. Noe, Oct 14 2003
a(17)-a(22) from Robert Gerbicz, Apr 15 2009
a(23)-a(25) from Marek Wolf and Robert Gerbicz (code from Robert, computation done by Marek) Robert Gerbicz, Mar 13 2010
a(26)-a(28) from Jon Grantham, Jan 18 2017
a(28) corrected by Jon Grantham, Jan 30 2018

A114270 Numbers k such that k^2 + 7 is prime.

Original entry on oeis.org

0, 2, 4, 6, 8, 10, 12, 16, 18, 22, 26, 30, 32, 34, 36, 38, 40, 48, 52, 58, 60, 62, 66, 74, 76, 78, 100, 106, 110, 114, 116, 118, 120, 122, 124, 132, 136, 138, 144, 146, 148, 158, 162, 164, 176, 184, 186, 190, 192, 194, 206, 208, 216, 220, 228, 232, 248, 250, 256, 258
Offset: 1

Views

Author

Zak Seidov, Nov 19 2005

Keywords

Crossrefs

Other sequences of the type "Numbers k such that k^2 + i is prime": A005574 (i=1), A067201 (i=2), A049422 (i=3), A007591 (i=4), A078402 (i=5), A114269 (i=6), this sequence (i=7), A114271 (i=8), A114272 (i=9), A114273 (i=10), A114274 (i=11), A114275 (i=12).

Programs

A114269 Numbers k such that k^2 + 6 is prime.

Original entry on oeis.org

1, 5, 11, 19, 25, 31, 35, 61, 65, 79, 89, 91, 109, 131, 145, 151, 175, 185, 199, 221, 269, 329, 331, 355, 401, 431, 445, 481, 485, 511, 515, 529, 539, 569, 595, 605, 611, 649, 695, 709, 731, 775, 779, 859, 889, 905, 929, 941, 949, 955, 971, 985, 991
Offset: 1

Views

Author

Zak Seidov, Nov 19 2005

Keywords

Crossrefs

Other sequences of the type "Numbers k such that k^2 + i is prime": A005574 (i=1), A067201 (i=2), A049422 (i=3), A007591 (i=4), A078402 (i=5), A114270 (i=7), A114271 (i=8), A114272 (i=9), A114273 (i=10), A114274 (i=11), A114275 (i=12).

Programs

  • Mathematica
    With[{k=6}, Select[Range[1000], PrimeQ[ #^2+k]&]]
  • PARI
    is(n)=isprime(n^2+6) \\ Charles R Greathouse IV, Jan 21 2015

A114272 Numbers k such that k^2 + 9 is prime.

Original entry on oeis.org

2, 8, 10, 20, 32, 38, 40, 52, 58, 62, 70, 82, 88, 98, 100, 110, 112, 118, 140, 142, 160, 170, 188, 190, 200, 202, 212, 218, 220, 242, 298, 308, 320, 332, 350, 358, 368, 380, 382, 400, 410, 412, 422, 448, 472, 482, 490, 502, 512, 530, 538, 542, 568, 572, 578
Offset: 1

Views

Author

Zak Seidov, Nov 19 2005

Keywords

Crossrefs

Other sequences of the type "Numbers k such that k^2 + i is prime": A005574 (i=1), A067201 (i=2), A049422 (i=3), A007591 (i=4), A078402 (i=5), A114269 (i=6), A114270 (i=7), A114271 (i=8), this sequence (i=9), A114273 (i=10), A114274 (i=11), A114275 (i=12).

Programs

Formula

a(n) = 2 * A002970(n). - Michel Marcus, Jan 20 2015

A114273 Numbers k such that k^2 + 10 is prime.

Original entry on oeis.org

1, 3, 7, 11, 13, 27, 31, 39, 49, 53, 57, 59, 71, 77, 81, 83, 91, 97, 99, 101, 123, 127, 129, 141, 151, 157, 161, 169, 171, 179, 181, 189, 207, 209, 211, 223, 227, 237, 239, 249, 253, 291, 311, 319, 333, 343, 363, 367, 379, 393, 403, 413, 423, 427, 437, 447, 449
Offset: 1

Views

Author

Zak Seidov, Nov 19 2005

Keywords

Crossrefs

Other sequences of the type "Numbers k such that k^2 + i is prime": A005574 (i=1), A067201 (i=2), A049422 (i=3), A007591 (i=4), A078402 (i=5), A114269 (i=6), A114270 (i=7), A114271 (i=8), A114272 (i=9), this sequence (i=10), A114274 (i=11), A114275 (i=12).

Programs

A114274 Numbers k such that k^2 + 11 is prime.

Original entry on oeis.org

0, 6, 24, 30, 36, 54, 90, 96, 114, 120, 126, 144, 150, 180, 186, 204, 210, 234, 246, 270, 300, 324, 366, 390, 444, 456, 486, 504, 510, 564, 636, 654, 666, 684, 690, 720, 774, 780, 834, 846, 864, 930, 936, 954, 960, 984
Offset: 1

Views

Author

Zak Seidov, Nov 19 2005

Keywords

Crossrefs

Other sequences of the type "Numbers k such that k^2 + i is prime": A005574 (i=1), A067201 (i=2), A049422 (i=3), A007591 (i=4), A078402 (i=5), A114269 (i=6), A114270 (i=7), A114271 (i=8), A114272 (i=9), A114273 (i=10), this sequence (i=11), A114275 (i=12).

Programs

A114275 Numbers k such that k^2 + 12 is prime.

Original entry on oeis.org

1, 5, 7, 13, 19, 23, 29, 35, 37, 41, 43, 47, 55, 61, 85, 89, 91, 97, 113, 119, 121, 127, 139, 161, 167, 169, 175, 187, 191, 197, 203, 211, 215, 223, 229, 245, 265, 271, 295, 299, 307, 317, 335, 341, 355, 371, 379, 383, 401, 419, 427, 455, 463, 475, 491, 517, 527
Offset: 1

Views

Author

Zak Seidov, Nov 19 2005

Keywords

Crossrefs

Other sequences of the type "Numbers k such that k^2 + i is prime": A005574 (i=1), A067201 (i=2), A049422 (i=3), A007591 (i=4), A078402 (i=5), A114269 (i=6), A114270 (i=7), A114271 (i=8), A114272 (i=9), A114273 (i=10), A114274 (i=11), this sequence (i=12).

Programs

Previous Showing 31-40 of 178 results. Next