cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 178 results. Next

A114271 Numbers k such that k^2 + 8 is prime.

Original entry on oeis.org

3, 9, 15, 21, 33, 51, 57, 81, 87, 111, 117, 123, 129, 135, 141, 147, 153, 177, 189, 213, 219, 255, 279, 285, 315, 321, 327, 345, 351, 363, 399, 417, 465, 471, 477, 483, 495, 549, 579, 585, 627, 657, 663, 669, 723, 735, 741, 747, 759, 771, 783, 789, 807, 825
Offset: 1

Views

Author

Zak Seidov, Nov 19 2005

Keywords

Crossrefs

Other sequences of the type "Numbers k such that k^2 + i is prime": A005574 (i=1), A067201 (i=2), A049422 (i=3), A007591 (i=4), A078402 (i=5), A114269 (i=6), A114270 (i=7), this sequence (i=8), A114272 (i=9), A114273 (i=10), A114274 (i=11), A114275 (i=12).

Programs

A103854 Positive integers n such that n^6 + 1 is semiprime.

Original entry on oeis.org

2, 4, 10, 36, 56, 94, 126, 224, 260, 270, 300, 350, 686, 716, 780, 1036, 1070, 1080, 1156, 1174, 1210, 1394, 1416, 1434, 1440, 1460, 1524, 1550, 1576, 1616, 1654, 1660, 1700, 1756, 1860, 1980, 2054, 2084, 2096, 2116, 2224, 2454, 2600, 2664, 2770, 2864
Offset: 1

Views

Author

Jonathan Vos Post, Mar 31 2005

Keywords

Comments

n^6+1 can only be prime when n = 1, n^6+1 = 2. This is because the sum of cubes formula gives the polynomial factorization n^6+1 = (n^2+1) * (n^4 - n^2 + 1). Hence n^6+1 can only be semiprime when both (n^2+1) and (n^4 - n^2 + 1) are primes.

Examples

			n n^6+1 = (n^2+1) * (n^4 - n^2 + 1)
2 65 = 5 * 13
4 4097 = 17 * 241
10 1000001 = 101 * 9901
36 2176782337 = 1297 * 1678321
56 30840979457 = 3137 * 9831361
94 689869781057 = 8837 * 78066061
126 4001504141377 = 15877 * 252031501
224 126324651851777 = 50177 * 2517580801
		

Crossrefs

Programs

  • Mathematica
    semiprimeQ[n_] := Plus @@ Last /@ FactorInteger[n] == 2; Select[ 2Range@1526, semiprimeQ[ #^6 + 1] &] (* Robert G. Wilson v, May 26 2006 *)
    Select[Range[200000], PrimeQ[#^2 + 1] && PrimeQ[(#^6 + 1)/(#^2 + 1)] &] (* Robert Price, Mar 11 2015 *)
  • PARI
    is(n)=my(s=n^2); isprime(s+1) && isprime(s^2-s+1) \\ Charles R Greathouse IV, Aug 31 2021

Formula

a(n)^6 + 1 is semiprime. (a(n)^2+1) is prime and (a(n)^4 - a(n)^2 + 1) is prime.

Extensions

More terms from Robert G. Wilson v, May 26 2006

A096012 Numbers k such that k^2+1 and (k+2)^2+1 are both prime; twin k^2+1 primes.

Original entry on oeis.org

2, 4, 14, 24, 54, 124, 204, 384, 464, 634, 644, 714, 1094, 1144, 1174, 1244, 1274, 1314, 1374, 1564, 1614, 1674, 1684, 1964, 2054, 2084, 2094, 2404, 2454, 2534, 2664, 2834, 2924, 3134, 3304, 3534, 3754, 3774, 4024, 4154, 4174, 4364, 4604, 4614, 4734, 4784
Offset: 1

Views

Author

Jason Earls, Jul 20 2004

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..5000] | IsPrime(n^2+1) and IsPrime((n+2)^2+1)]; // Vincenzo Librandi, Feb 27 2016
    
  • Mathematica
    Select[Range[5000],AllTrue[{#^2+1,(#+2)^2+1},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 23 2014 *)
    Select[Range[5000], PrimeQ[#^2 + 1] && PrimeQ[(# + 2)^2 + 1] &] (* Vincenzo Librandi, Feb 27 2016 *)
  • PARI
    isok(n) = isprime(n^2+1) && isprime((n+2)^2+1); \\ Michel Marcus, Feb 27 2016

Formula

a(k) = A108814(k) - 1. - Jeppe Stig Nielsen, Feb 26 2016

A113536 Numbers k such that k^2 + 13 is prime.

Original entry on oeis.org

0, 2, 4, 10, 12, 16, 18, 28, 40, 42, 44, 46, 60, 68, 72, 82, 84, 88, 94, 108, 110, 114, 116, 122, 126, 142, 144, 152, 158, 180, 192, 194, 198, 200, 220, 222, 264, 266, 268, 282, 284, 296, 298, 332, 336, 340, 354, 378, 380, 418, 420, 430, 434, 446, 464, 466, 486
Offset: 1

Views

Author

Zak Seidov, Jan 13 2006

Keywords

Examples

			If n=40 then n^2 + 13 = 1613 (prime), so 40 is in the sequence.
		

Crossrefs

Other cases: A005574 k=1, A067201 k=2, A049422 k=3, A007591 k=4, A078402 k=5, A114269-A114275 k=6-12.

Programs

  • Mathematica
    With[{k=13}, Select[Range[1000], PrimeQ[ #^2+k]&]]
  • PARI
    is(n)=isprime(n^2+13) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

Edited by R. J. Mathar, Aug 07 2008

A125260 Numbers k such that k^5 + 4 is prime.

Original entry on oeis.org

1, 7, 9, 25, 39, 45, 73, 85, 99, 147, 163, 165, 169, 189, 213, 219, 223, 225, 249, 253, 259, 279, 333, 337, 385, 433, 457, 465, 469, 477, 499, 595, 639, 643, 655, 703, 709, 715, 729, 849, 853, 895, 969, 973, 979, 987, 1065, 1075, 1077, 1093, 1165, 1239, 1255
Offset: 1

Views

Author

Zak Seidov, Nov 26 2006

Keywords

Crossrefs

Other sequences of the type "Numbers k such that k^j + j - 1 is prime": A000040 (j=1), A005574 (j=2), A067200 (j=3), A125259 (j=4), this sequence (j=5), A125261 (j=6), A125262 (j=7), A125263 (j=8), A125264 (j=10), A125265 (j=11)...

Programs

A035092 Smallest k such that (n^2)*k + 1 is prime.

Original entry on oeis.org

1, 1, 2, 1, 4, 1, 4, 3, 2, 1, 6, 3, 4, 1, 8, 1, 12, 4, 30, 1, 2, 3, 24, 1, 18, 1, 2, 4, 12, 2, 16, 12, 2, 3, 6, 1, 4, 13, 6, 1, 10, 2, 12, 6, 2, 6, 4, 8, 6, 9, 6, 9, 28, 1, 4, 1, 10, 3, 6, 4, 46, 4, 4, 3, 4, 1, 4, 3, 22, 6, 10, 2, 4, 1, 2, 7, 22, 3, 6, 4, 6, 3, 10, 1, 4, 3, 2, 4, 6, 1, 10, 4, 2, 1
Offset: 1

Views

Author

Keywords

Examples

			a(40) = 1 because in 1600k + 1 at k = 1, 1601 is the smallest prime;
a(61) = 46 because in the 46*46*k + 1 sequence the first prime appears at k = 46; it is 171167.
		

Crossrefs

Analogous case is A034693. See also A005574 and A002496.

Programs

  • Mathematica
    Table[k = 1; While[! PrimeQ[k (n^2) + 1], k++]; k, {n, 94}] (* Michael De Vlieger, Dec 17 2016 *)
  • PARI
    a(n)=k=1;while(!isprime(k*n^2+1),k++);k
    vector(100,n,a(n)) \\ Derek Orr, Oct 01 2014

A125259 Numbers k such that k^4 + 3 is prime.

Original entry on oeis.org

0, 2, 8, 16, 22, 26, 28, 34, 44, 62, 68, 76, 82, 92, 104, 110, 118, 128, 134, 166, 184, 202, 212, 266, 286, 296, 314, 328, 350, 356, 376, 406, 428, 436, 460, 470, 506, 520, 532, 562, 580, 638, 650, 652, 680, 692, 722, 734, 740, 778, 812, 820, 824, 862, 896, 908
Offset: 1

Views

Author

Zak Seidov, Nov 26 2006

Keywords

Crossrefs

Other sequences of the type "Numbers k such that k^j + j - 1 is prime": A000040 (j=1), A005574 (j=2), A067200 (j=3), this sequence (j=4), A125260 (j=5), A125261 (j=6), A125262 (j=7), A125263 (j=8), A125264 (j=10), A125265 (j=11)...

Programs

  • Mathematica
    Select[Range[0,1000],PrimeQ[#^4+3]&] (* Harvey P. Dale, Aug 02 2023 *)
  • PARI
    isok(n, k=4) = isprime(n^k + k - 1); \\ Michel Marcus, Oct 11 2013

A070155 Numbers k such that k-1, k+1 and k^2+1 are prime numbers.

Original entry on oeis.org

4, 6, 150, 180, 240, 270, 420, 570, 1290, 1320, 2310, 2550, 2730, 3360, 3390, 4260, 4650, 5850, 5880, 6360, 6780, 9000, 9240, 9630, 10530, 10890, 11970, 13680, 13830, 14010, 14550, 16230, 16650, 18060, 18120, 18540, 19140, 19380, 21600, 21840
Offset: 1

Views

Author

Labos Elemer, Apr 23 2002

Keywords

Comments

Essentially the same as A129293. - R. J. Mathar, Jun 14 2008
Solutions to the equation: A000005(n^4-1) = 8. - Enrique Pérez Herrero, May 03 2012
Terms > 6 are multiples of 30. Subsequence of A070689. - Zak Seidov, Nov 12 2012
{a(n)-1} is a subsequence of A157468; for n>1, {a(n)^2+2} is a subsequence of A242720. - Vladimir Shevelev, Aug 31 2014

Examples

			150 is a term since 149, 151 and 22501 are all primes.
		

Crossrefs

Programs

  • Maple
    select(n -> isprime(n-1) and isprime(n+1) and isprime(n^2+1), [seq(2*i,i=1..10000)]); # Robert Israel, Sep 02 2014
  • Mathematica
    Do[s=n; If[PrimeQ[s-1]&&PrimeQ[s+1]&&PrimeQ[1+s^2], Print[n]], {n, 1, 1000000}]
    Select[Range[22000],AllTrue[{#+1,#-1,#^2+1},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Dec 19 2014 *)
  • PARI
    is(k) = isprime(k-1) && isprime(k+1) && isprime(k^2+1); \\ Amiram Eldar, Apr 15 2024

Formula

For n>1, a(n)^2 = A242720(pi(a(n)-2)) - 2, where pi(n) is the prime counting function (A000720). - Vladimir Shevelev, Sep 02 2014

A199307 Primes of the form 4n^3 + 1.

Original entry on oeis.org

5, 109, 257, 1373, 2917, 4001, 27437, 62501, 157217, 202613, 237277, 296353, 470597, 629857, 665501, 1492993, 1556069, 1898209, 2456501, 2634013, 3217429, 3322337, 4244833, 5038849, 5180117, 6572129, 10512289, 11453153, 12706093
Offset: 1

Views

Author

N. J. A. Sloane, Nov 05 2011

Keywords

Comments

Dirichlet's theorem on primes in arithmetic progressions tells us, for example, that there are infinitely many primes of the form 4n+1. For primes represented by polynomials of degree greater than 1, the Bateman-Horn paper gives a conjecture on the density.

Crossrefs

Programs

A331941 Hardy-Littlewood constant for the polynomial x^2 + 1.

Original entry on oeis.org

6, 8, 6, 4, 0, 6, 7, 3, 1, 4, 0, 9, 1, 2, 3, 0, 0, 4, 5, 5, 6, 0, 9, 6, 3, 4, 8, 3, 6, 3, 5, 0, 9, 4, 3, 4, 0, 8, 9, 1, 6, 6, 5, 5, 0, 6, 2, 7, 8, 7, 9, 7, 7, 8, 9, 6, 8, 1, 1, 7, 0, 7, 3, 6, 6, 3, 9, 2, 1, 1, 1, 3, 3, 5, 8, 6, 8, 5, 1, 1, 5, 8, 6, 3, 8, 5, 9
Offset: 0

Views

Author

Hugo Pfoertner, Feb 02 2020

Keywords

Examples

			0.686406731409123004556096348363509434089166550627879778968117...
		

References

  • Henri Cohen, Number Theory, Vol II: Analytic and Modern Tools, Springer (Graduate Texts in Mathematics 240), 2007.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.1, p. 85.

Crossrefs

Programs

  • PARI
    \\ See Belabas, Cohen link. Run as HardyLittlewood2(x^2+1)/2 after setting the required precision.

Formula

Equals (1/2)*Product_{p=primes} (1 - Kronecker(-4,p)/(p - 1)).
Equals A199401/2.
Previous Showing 41-50 of 178 results. Next