cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 119 results. Next

A097822 Numbers n such that n^2+n+41 (Euler's "prime generating polynomial") has more than 2 prime factors.

Original entry on oeis.org

420, 431, 491, 492, 514, 533, 573, 574, 603, 614, 655, 686, 738, 775, 798, 858, 861, 890, 895, 901, 904, 917, 919, 942, 984, 989, 1025, 1059, 1116, 1130, 1162, 1169, 1188, 1215, 1222, 1224, 1245, 1251, 1253, 1268, 1271, 1318, 1321, 1334, 1365, 1374, 1407
Offset: 1

Views

Author

Hugo Pfoertner, Aug 26 2004

Keywords

Comments

All visible sequence terms give exactly 3 prime factors. The smallest composite of the form p(n)=n^2+n+41 with 4 prime factors occurs for p(1721)=2963603=43*41^3. Smallest n with 4 distinct prime factors: p(2911)=8476873=83*53*47*41, smallest n with 5 prime factors: p(14144)=200066921=47^4*41, smallest n with 5 distinct prime factors: p(38913)=1514260523=173*71*61*47*43.

Examples

			a(1)=420 because 420^2+420+41=176861=71*53*47 is the first n for which p(n)=n^2+n+41 has more than 2 prime factors. For all smaller n p(n) is either prime or semiprime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1500],PrimeOmega[#^2+#+41]>2&] (* Harvey P. Dale, Dec 26 2017 *)
  • PARI
    isok(n) = #factor(n^2+n+41)~ > 2; \\ Michel Marcus, Sep 07 2017

Extensions

Corrected a(19) by Hugo Pfoertner, Sep 07 2017

A116206 Primes of the form n^2 + n + 55661, with n >= 0.

Original entry on oeis.org

55661, 55663, 55667, 55673, 55681, 55691, 55717, 55733, 55793, 55817, 55843, 55871, 55901, 55933, 55967, 56003, 56041, 56081, 56123, 56167, 56311, 56417, 56473, 56531, 56591, 56783, 56921, 56993, 57143, 57221, 57301, 57383, 57467
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Apr 14 2007

Keywords

Comments

n^2+n+55661 is the first or second most efficient formula for finding primes until we get to n^2+n+154001 (competitors are n^2+n+41, n^2+n+55661, n^2+n+41537, n^2+n+27941, n^2+n+21377, ...)

Crossrefs

Cf. A005846.

A117624 Primes of the form f(k) = 9*k^6 - 804*k^5 + 29836*k^4 - 588615*k^3 + 6509950*k^2 - 38263500*k + 93363947 for values of k >= 0.

Original entry on oeis.org

93363947, 61050823, 38620051, 23498297, 13649371, 7493947, 3835763, 1794301, 743947, 259631, 68947, 10753, 251, 547, 691, 197, 43, 151, 3347, 25801, 113947, 367883, 971251, 2227597, 4603211, 8776447, 15693523, 26630801, 102768947, 218611051, 1738931741
Offset: 1

Views

Author

Parviz Afereidoon (afereidoon(AT)gmail.com), Apr 08 2006

Keywords

Comments

This polynomial f(n) generates 28 consecutive prime numbers for n = 0 to n = 27.
In n^2 + n + 41, substitute n -> 3*n^3 - 134*n^2 + 1980*n - 9663.

Examples

			f(1) = 9(1)^6 - 804(1)^5 + 29836(1)^4 - 588615(1)^3 + 6509950(1)^2 - 38263500(1) + 93363947 = 61050823, a prime number.
		

References

  • P. Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 137.

Crossrefs

Cf. A005846.

Programs

  • Magma
    [a: n in [0..200] | IsPrime(a) where a is 9*n^6 - 804*n^5 + 29836*n^4 - 588615*n^3 + 6509950*n^2 - 38263500*n + 93363947 ]; // Vincenzo Librandi, Jul 28 2025
  • Mathematica
    f[n_] := 9n^6-804n^5+29836n^4-588615n^3+6509950n^2-38263500n+93363947; f[Select[Range[0, 100], PrimeQ[f[ # ]] &]] (* Stefan Steinerberger, Apr 16 2006 *)

Extensions

Edited by Don Reble, Apr 14 2006
More terms from Petros Hadjicostas, Nov 04 2019

A145202 Primes of form 4*n^2 + 4*n + 653.

Original entry on oeis.org

653, 661, 677, 701, 733, 773, 821, 877, 941, 1013, 1093, 1181, 1277, 1381, 1493, 1613, 1741, 1877, 2333, 2677, 2861, 3253, 3461, 3677, 4133, 4373, 4621, 4877, 5413, 5693, 5981, 6277, 6581, 7213, 7541, 7877, 8221, 8573, 8933, 9677, 10061, 10453, 10853
Offset: 1

Views

Author

Klaus Brockhaus, Oct 04 2008

Keywords

Comments

First 18 terms are for n from 0 through 17, next terms are for n = 20, 22, 23, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 38, 40, ...
The sequence of n such that 4*n^2 + 4*n + 653 is composite starts 18, 19, 21, 24, 28, 33, 39, 46, 54, 60, 61, 62, 63, 65, 67, 72, 73, 75, 81, 82, 84, 85, 86, 93, 95, 96, 100, ...
These primes are in A000414. [Bruno Berselli, Apr 20 2014]

Examples

			a(18) = 4*17^2 + 4*17 + 653 = 1877.
		

Crossrefs

A145125 is essentially the same sequence.
Cf. A005846 (primes of form n^2 + n + 41).

Programs

  • Magma
    [a: n in [0..100] | IsPrime(a) where a is  4*n^2 + 4*n + 653]; // Vincenzo Librandi, Apr 21 2014
  • Mathematica
    Select[Table[4 n^2 + 4 n + 653, {n, 0, 100}], PrimeQ] (* Vincenzo Librandi, Apr 21 2014 *)
  • PARI
    {for(n=0, 50, if(isprime(p=4*n^2+4*n+653), print1(p, ",")))}
    

A188424 Number of primes of the form k^2 + k + 2n - 1 for k = 0..2n-1.

Original entry on oeis.org

1, 2, 4, 4, 2, 10, 4, 3, 16, 6, 5, 10, 10, 5, 13, 14, 3, 10, 16, 7, 40, 8, 6, 26, 12, 9, 19, 14, 9, 34, 21, 5, 19, 36, 13, 28, 18, 7, 31, 18, 19, 34, 15, 14, 27, 27, 11, 41, 31, 11, 68, 16, 10, 71, 30, 20, 23, 21, 16, 40, 40, 13, 57, 37, 23, 37, 24, 16, 67, 44, 16, 41, 20, 20, 54, 55, 12, 43, 54, 15, 81, 26, 15, 65, 34, 37, 50, 20, 29, 70, 68, 14, 52, 46, 14, 79, 43, 18, 60, 70
Offset: 1

Views

Author

Michel Lagneau, Mar 30 2011

Keywords

Examples

			a(21) = 40 because the polynomial k^2 + k + 41 generates 40 distinct primes for k = 0, 1, .., 39.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 by 2 to 200 do:m:=0:for k from 0 to n do: x:=k^2+k+n:if
      type(x,prime)=true then m:=m+1:else fi:od:printf(`%d, `,m):od:

A228122 Smallest nonnegative number x such that x^2 + x + 41 has exactly n prime factors counting multiplicities.

Original entry on oeis.org

0, 40, 420, 1721, 14144, 139563, 3019035, 24304266, 206583092, 3838101265
Offset: 1

Views

Author

Shyam Sunder Gupta, Aug 11 2013

Keywords

Examples

			a(1) = 0 because if x = 0 then x^2 + x + 41 = 41, which has 1 prime factor.
a(2) = 40 because if x = 40 then x^2 + x + 41 = 1681 = 41*41, which has 2 prime factors, counting multiplicities.
a(3) = 420 because if x = 420 then x^2 + x + 41 = 176861 = 47*53*71, which has 3 prime factors.
		

Crossrefs

Programs

  • Mathematica
    a = {}; Do[x = 0; While[PrimeOmega[x^2 + x + 41] != k, x++]; AppendTo[a, x], {k, 9}]; a
  • PARI
    a(n) = {my(m=0); while (bigomega(m^2+m+41) != n, m++); m;} \\ Michel Marcus, Jan 31 2016
    
  • Python
    from sympy import factorint
    def A228122(n):
        k = 0
        while sum(factorint(k*(k+1)+41).values()) != n:
            k += 1
        return k # Chai Wah Wu, Sep 07 2018

Extensions

a(9) from Zak Seidov, Feb 01 2016
a(10) from Giovanni Resta, Sep 08 2018

A238242 Primes p such that p^2+p+41 is also prime.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 97, 101, 103, 107, 113, 131, 137, 139, 149, 151, 157, 167, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 241, 257, 263, 269, 277, 281, 293, 307, 311, 313, 317, 337, 353
Offset: 1

Views

Author

K. D. Bajpai, Feb 20 2014

Keywords

Comments

n^2 + n + 41 is Euler’s prime generating polynomial.
The first 12 terms in the sequence are the first 12 consecutive primes.

Examples

			13 is in the sequence because 13 is prime and 13^2+13+41 = 223 is also prime.
113 is in the sequence because 113 is prime and 113^2+113+41 =  12923 is also prime.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(400)| IsPrime(p^2+p+41)]; // Vincenzo Librandi, Feb 22 2014
  • Maple
    with(numtheory):KD := proc() local a,b; a:=ithprime(n); b:=a^2+a+41;  if isprime(b) then RETURN (a);  fi; end: seq(KD(), n=1..500);
  • Mathematica
    Select[Prime[Range[200]],PrimeQ[#^2+#+41]&]
  • PARI
    s=[]; forprime(p=2, 1000, if(isprime(p^2+p+41), s=concat(s, p))); s \\ Colin Barker, Feb 20 2014
    

A257362 Odd primes modulo which -163 is a square.

Original entry on oeis.org

41, 43, 47, 53, 61, 71, 83, 97, 113, 131, 151, 163, 167, 173, 179, 197, 199, 223, 227, 251, 263, 281, 307, 313, 347, 359, 367, 373, 379, 383, 397, 409, 419, 421, 439, 457, 461, 487, 499, 503, 523, 547, 563, 577, 593, 607, 641, 647, 653, 661, 673, 677, 691
Offset: 1

Views

Author

Robert Israel, Apr 20 2015

Keywords

Comments

Contains A005846. The first members that are not in A005846 are 163 and 167.
Primes that divide some member of A202018.
Primes congruent to x^2 mod 163 for some x, 0 <= x <= 162.
Primes of the form x^2 + xy + 41y^2. Also, primes of the form x^2 - xy + 41y^2 with x and y nonnegative. - Jianing Song, Feb 19 2021

Crossrefs

Programs

  • Maple
    select(p -> isprime(p) and (p=163 or numtheory:-legendre(-163,p)=1), [seq(2*i+1,i=1..1000)]);
    # Another Maple program is given in A296920. - N. J. A. Sloane, Dec 25 2017
  • Mathematica
    Reap[For[p=3, p<1000, p = NextPrime[p], If[p==163 || KroneckerSymbol[-163, p] == 1, Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Apr 29 2019 *)
  • PARI
    is(n)=isprime(n) && issquare(Mod(-163,n)) \\ Charles R Greathouse IV, Nov 28 2016

Formula

a(n) ~ 2n log n. - Charles R Greathouse IV, Nov 28 2016

A267252 Primes of the form abs(103*n^2 - 4707*n + 50383) in order of increasing nonnegative n.

Original entry on oeis.org

50383, 45779, 41381, 37189, 33203, 29423, 25849, 22481, 19319, 16363, 13613, 11069, 8731, 6599, 4673, 2953, 1439, 131, 971, 1867, 2557, 3041, 3319, 3391, 3257, 2917, 2371, 1619, 661, 503, 1873, 3449, 5231, 7219, 9413, 11813, 14419, 17231, 20249, 23473, 26903
Offset: 1

Views

Author

Robert Price, Apr 28 2016

Keywords

Comments

This polynomial is a transformed version of the polynomial P(x) = 103*x^2 + 31*x - 3391 whose absolute value gives 43 distinct primes for -23 <= x <= 19, found by G. W. Fung in 1988. - Hugo Pfoertner, Dec 13 2019

Examples

			33203 is in this sequence since 103*4^2 - 4707*4 + 50383  = 1648-18828+50383 = 33203 is prime.
		

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Second Edition, Springer-Verlag New York, 2004.

Crossrefs

Programs

  • Mathematica
    n = Range[0, 100]; Abs @ Select[103n^2 - 4707n + 50383 , PrimeQ[#] &]
  • PARI
    lista(nn) = for(n=0, nn, if(isprime(p=abs(103*n^2-4707*n+50383)), print1(p, ", "))); \\ Altug Alkan, Apr 28 2016, corrected by Hugo Pfoertner, Dec 13 2019

Extensions

Title corrected by Hugo Pfoertner, Dec 13 2019

A268200 Nonnegative numbers n such that abs(n^4 - 97n^3 + 3294n^2 - 45458n + 213589) is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 62, 65, 67, 70, 72, 73, 74, 75, 84, 85, 86, 90, 92
Offset: 1

Views

Author

Robert Price, Apr 30 2016

Keywords

Comments

50 is the smallest number not in this sequence.

Examples

			4 is in this sequence since abs(4^4 - 97*4^3 + 3294*4^2 - 45458*4 + 213589) = abs(256-6208+52704-181832+213589) = 78509 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100], PrimeQ[#^4 - 97#^3 + 3294#^2 - 45458# + 213589] &]
  • PARI
    is(n)=isprime(abs(n^4-97*n^3+3294*n^2-45458*n+213589)) \\ Charles R Greathouse IV, Feb 20 2017
Previous Showing 41-50 of 119 results. Next