cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 106 results. Next

A328574 a(1) = 0, and, for n >= 2, numbers n whose primorial base expansion doesn't contain any nonleading zeros.

Original entry on oeis.org

0, 1, 3, 5, 9, 11, 15, 17, 21, 23, 27, 29, 39, 41, 45, 47, 51, 53, 57, 59, 69, 71, 75, 77, 81, 83, 87, 89, 99, 101, 105, 107, 111, 113, 117, 119, 129, 131, 135, 137, 141, 143, 147, 149, 159, 161, 165, 167, 171, 173, 177, 179, 189, 191, 195, 197, 201, 203, 207, 209, 249, 251, 255, 257, 261, 263, 267, 269, 279, 281, 285
Offset: 1

Views

Author

Antti Karttunen, Oct 20 2019

Keywords

Comments

After the initial zero, numbers n for which A276086(n) produces an even number with no gaps in its prime factorization.
Numbers n such that A276086(n) is in A055932; numbers for which A328475(n) is equal to A328572(n) = A003557(A276086(n)).
The number of positive terms below prime(m)# = A002110(m) is Sum_{k=1..m} A005867(k). - Amiram Eldar, Feb 16 2021

Crossrefs

Positions of 1's in A328573, positions of 0's in A329027, cf. also A328840.
Cf. A227157 for analogous sequence.

Programs

  • Mathematica
    max = 4; bases = Prime @ Range[max, 1, -1]; nmax = Times @@ bases - 1; Join[{0}, Select[Range[nmax], FreeQ[IntegerDigits[#, MixedRadix[bases]], 0] &]] (* Amiram Eldar, Feb 16 2021 *)
  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    isA055932(n) = { my(f=factor(n)[, 1]~); f==primes(#f); }; \\ From A055932
    isA328574(n) = isA055932(A276086(n));
    
  • PARI
    A328475(n) = { my(m=1, p=2, y=1); while(n, if(n%p, m *= p^((n%p)-y), y=0); n = n\p; p = nextprime(1+p)); (m); };
    A328572(n) = { my(m=1, p=2); while(n, if(n%p, m *= p^((n%p)-1)); n = n\p; p = nextprime(1+p)); (m); };
    isA328574(n) = (A328475(n) == A328572(n));

Extensions

Primary definition changed, the old definition moved to comment section by Antti Karttunen, Nov 03 2019

A055768 Number of distinct primes dividing phi of n-th primorial number.

Original entry on oeis.org

0, 1, 1, 2, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 6, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 10, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 14, 15, 15, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 18, 19, 19, 19, 19, 20, 21, 21, 22, 22, 23, 23, 23, 24, 24, 24, 25, 26, 26, 26, 27, 28, 28
Offset: 1

Views

Author

Labos Elemer, Jul 12 2000

Keywords

Examples

			For primorials with 10, 100, or 1000 prime factors, their totients have only 5, 32 or 241 prime divisors, corresponding to a(10), a(100), and a(1000).
		

Crossrefs

Programs

  • Haskell
    a055768 = a001221 . a005867  -- Reinhard Zumkeller, May 01 2013
    
  • Mathematica
    Table[PrimeNu@ EulerPhi[Product[Prime@ i, {i, n}]], {n, 78}] (* or *)
    With[{nn = 78}, PrimeNu@ FoldList[LCM @@ {#1, #2} &, Prime@ Range@ nn - 1]] (* Michael De Vlieger, Jul 14 2017 *)
  • PARI
    a(n)=omega(lcm(apply(p->p-1, primes(n)))) \\ Charles R Greathouse IV, Sep 02 2015

Formula

a(n) < n. - Charles R Greathouse IV, Sep 02 2015

A096294 Triangle T(n,k) read by rows: for n >=0 and n >= k >=0, the fraction of positive integers with exactly k of the first n primes as divisors is T(n,k)/A002110(n).

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 8, 14, 7, 1, 48, 92, 56, 13, 1, 480, 968, 652, 186, 23, 1, 5760, 12096, 8792, 2884, 462, 35, 1, 92160, 199296, 152768, 54936, 10276, 1022, 51, 1, 1658880, 3679488, 2949120, 1141616, 239904, 28672, 1940, 69, 1, 36495360, 82607616
Offset: 0

Views

Author

Matthew Vandermast, Jun 24 2004

Keywords

Comments

Sum of entries in n-th row is A002110(n), the product of the first n primes (primorial numbers, first definition).
From Peter Munn, Apr 10 2017: (Start)
T(n,k) is a count of those integers in any interval of A002110(n) integers that have exactly k of the first n primes as divisors. The count is the same for each such interval because each of the first n primes is a factor of an integer m if and only if it is a factor of m + A002110(n).
A284411(m) is least p=prime(n) such that 2*Sum_{k=0..m-1} T(n,k) < A002110(n).
(End)

Examples

			Triangle begins:
1
1 1
2 3 1
8 14 7 1
48 92 56 13 1
480 968 652 186 23 1
		

Crossrefs

First column is A005867; second column is A078456. See also A096180.

Programs

  • PARI
    primo(n) = prod(k=1, n, prime(k));
    row(n) = {v = vector(n+1); for (k=1, primo(n), f = factor(k)[,1]; v[1+sum(j=1, #f, primepi(f[j])<=n)]++;); v;} \\ Michel Marcus, Apr 29 2017

A098592 Number of primes between n*30 and (n+1)*30.

Original entry on oeis.org

10, 7, 7, 6, 5, 6, 5, 6, 5, 5, 4, 6, 5, 4, 6, 5, 5, 2, 5, 5, 5, 6, 4, 4, 4, 5, 3, 6, 4, 4, 4, 4, 4, 5, 5, 4, 6, 3, 3, 4, 5, 4, 4, 6, 2, 3, 3, 5, 4, 7, 2, 5, 4, 6, 3, 4, 4, 3, 4, 4, 3, 2, 7, 3, 3, 3, 5, 5, 3, 5, 3, 5, 2, 3, 4, 4, 5, 3, 4, 7, 3, 4, 3, 1, 5, 3, 3, 3, 4, 7, 5, 4, 3, 5, 3, 4, 4, 3, 4, 2, 4, 3, 5, 2, 2, 3
Offset: 0

Views

Author

Hugo Pfoertner, Sep 16 2004

Keywords

Comments

Number of nonzero bits in A098591(n).
The number a(n) is < 8 except for n=0. - Pierre CAMI, Jun 02 2009
For references to positions where a(n) = 7 and related explanation, see A100418. - Peter Munn, Sep 06 2023

Examples

			a(1)=7 because there are 7 primes in the interval (30,60): 31,37,41,43,47,53,59.
a(26)=3 because the interval of length 30 following 26*30=780 contains 3 primes: 787, 797 and 809.
		

Crossrefs

Cf. A000040 (prime numbers), A098591 (packed representation of the primes mod 30), A100418, A185641.

Programs

  • FORTRAN
    ! See links given in A098591.
    
  • PARI
    a(n) = primepi(30*(n+1)) - primepi(30*n); \\ Michel Marcus, Apr 04 2020
    
  • Python
    from sympy import primerange
    def a(n): return len(list(primerange(n*30, (n+1)*30)))
    print([a(n) for n in range(106)]) # Michael S. Branicky, Oct 07 2021

Extensions

Edited by N. J. A. Sloane, Jun 12 2009 at the suggestion of R. J. Mathar

A304407 If n = Product (p_j^k_j) then a(n) = Product ((p_j - 1)*k_j).

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 6, 3, 4, 4, 10, 4, 12, 6, 8, 4, 16, 4, 18, 8, 12, 10, 22, 6, 8, 12, 6, 12, 28, 8, 30, 5, 20, 16, 24, 8, 36, 18, 24, 12, 40, 12, 42, 20, 16, 22, 46, 8, 12, 8, 32, 24, 52, 6, 40, 18, 36, 28, 58, 16, 60, 30, 24, 6, 48, 20, 66, 32, 44, 24, 70, 12, 72, 36, 16
Offset: 1

Views

Author

Ilya Gutkovskiy, May 12 2018

Keywords

Examples

			a(60) = a(2^2*3*5) = (2 - 1)*2 * (3 - 1)*1 * (5 - 1)*1 = 16.
		

Crossrefs

Programs

  • Maple
    seq(mul((p-1)*padic[ordp](n, p), p in numtheory[factorset](n)), n=1..100); # Ridouane Oudra, Jun 06 2025
  • Mathematica
    a[n_] := Times @@ ((#[[1]] - 1) #[[2]] & /@ FactorInteger[n]); a[1] = 1; Table[a[n], {n, 75}]
    Table[EulerPhi[Last[Select[Divisors[n], SquareFreeQ]]] DivisorSigma[0, n/Last[Select[Divisors[n], SquareFreeQ]]], {n, 75}]
  • PARI
    a(n)={my(f=factor(n)); prod(i=1, #f~, my(p=f[i,1], e=f[i,2]); (p-1)*e)} \\ Andrew Howroyd, Jul 24 2018

Formula

a(n) = A005361(n)*abs(A023900(n)) = A005361(n)*A173557(n) = A005361(n)*A000010(A007947(n)).
a(p^k) = (p - 1)*k where p is a prime and k > 0.
a(n) = phi(n) if n is a squarefree (A005117), where phi() = A000010.
a(A002110(k)) = A005867(k).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^4/72) * Product_{p prime} (1 - 4/p^2 + 3/p^3 + 1/p^4 - 1/p^5) = 0.2644703894... . - Amiram Eldar, Nov 30 2022
a(n) = (-1)^A001221(n) * (Sum_{d1|n} Sum_{d2|n} mu(d1)*gcd(d1,d2)). - Ridouane Oudra, Jun 06 2025

A345974 Decimal expansion of Sum_{k>=0} Product_{i=1..k} 1/(prime(i)-1).

Original entry on oeis.org

2, 6, 4, 8, 1, 0, 1, 7, 5, 9, 7, 0, 1, 4, 7, 1, 0, 2, 3, 3, 7, 0, 8, 8, 4, 1, 4, 5, 3, 6, 0, 6, 4, 7, 1, 4, 9, 2, 7, 2, 5, 8, 7, 0, 0, 2, 1, 4, 0, 3, 3, 9, 3, 2, 0, 7, 6, 7, 4, 4, 5, 4, 7, 9, 2, 5, 2, 7, 4, 0, 4, 6, 1, 6, 2, 6, 4, 2, 4, 7, 5, 8, 9, 3, 8, 1, 7, 0, 0, 7, 6, 8, 2, 8, 7, 3, 2, 0, 8, 1, 0, 9, 5
Offset: 1

Views

Author

Hugo Pfoertner, Jun 30 2021

Keywords

Examples

			2.64810175970147102337088414536064714927258700214033932076744547925274...
		

Crossrefs

Programs

  • Maple
    c:= sum(product(1/(ithprime(i)-1), i=1..k), k=0..infinity):
    evalf(c, 140);  # Alois P. Heinz, Jun 30 2021
  • PARI
    suminf(k=0,prod(i=1,k,1/(prime(i)-1)))

Formula

Equals Sum_{k>=0} 1/A005867(k) = Sum_{k>=1} 1/A055932(k) = Sum_{k>=1} 1/A057335(k). - Amiram Eldar, Jun 26 2025

A055769 Largest prime dividing phi of the n-th primorial.

Original entry on oeis.org

1, 2, 2, 3, 5, 5, 5, 5, 11, 11, 11, 11, 11, 11, 23, 23, 29, 29, 29, 29, 29, 29, 41, 41, 41, 41, 41, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 83, 83, 89, 89, 89, 89, 89, 89, 89, 89, 113, 113, 113, 113, 113, 113, 113, 131, 131, 131, 131, 131, 131, 131, 131, 131, 131, 131
Offset: 1

Views

Author

Labos Elemer, Jul 12 2000

Keywords

Examples

			While the largest prime factors of 10th, 100th or 1000th primorials are 29, 541, 7919, those of their totients are 11, 251, 3911, respectively.
		

Crossrefs

Programs

  • Haskell
    a055769 = a006530 . a005867  -- Reinhard Zumkeller, May 01 2013
    
  • Mathematica
    Map[FactorInteger[EulerPhi@ #][[-1, 1]] &, FoldList[#1 #2 &, Prime@ Range@ 66]] (* Michael De Vlieger, Oct 26 2017 *)
  • PARI
    gpf(n)=my(f=factor(n)[,1]); f[#f]
    a(n)=my(p=prime(n),q=1); while(2*q+1Charles R Greathouse IV, Dec 03 2014

Formula

a(n) = A006530(A000010(A002110(n))). [corrected by Amiram Eldar, Sep 18 2024]
a(n) = A006530(A005867(n)). - Reinhard Zumkeller, May 01 2013

A058255 Distinct values of lcm_{i=1..n} (p(i)-1), where p() are the primes.

Original entry on oeis.org

1, 2, 4, 12, 60, 240, 720, 7920, 55440, 1275120, 16576560, 480720240, 19709529840, 39419059680, 197095298400, 3350620072800, 177582863858400, 532748591575200, 19711697888282400, 59135093664847200
Offset: 1

Views

Author

Labos Elemer, Dec 06 2000

Keywords

Comments

The prime A095365(n) is the least prime yielding an LCM of a(n). This sequence and A095365 are related to A095366. - T. D. Noe, Jun 04 2004

Examples

			For p = 29, 31, 37, 41, 43 these LCMs are equal to 55440 = 11*7! = lcm[1, 2, 4, 6, 10, 12, 16, 22, 28, 30, 36, 40, 42] = lcm[1, 2, 4, 6, 10, 12, 16, 22, 28]. The values was put on the stage only once. Repetitions skipped.
		

Crossrefs

A058254 with duplicates removed.
Cf. A095366 (least k > 1 such that k divides 1^n + 2^n + ... + (k-1)^n).

Programs

  • Mathematica
    Union@ Table[LCM @@ (Prime@ Range[1, n] - 1), {n, 38}] (* Michael De Vlieger, Dec 06 2018 *)

A059862 a(n) = Product_{i=3..n} (prime(i) - 3).

Original entry on oeis.org

1, 1, 2, 8, 64, 640, 8960, 143360, 2867200, 74547200, 2087321600, 70968934400, 2696819507200, 107872780288000, 4746402332672000, 237320116633600000, 13289926531481600000, 770815738825932800000, 49332207284859699200000, 3354590095370459545600000, 234821306675932168192000000
Offset: 1

Views

Author

Labos Elemer, Feb 28 2001

Keywords

Examples

			For n = 6, a(6) = 640 because:
prime(1..6)-3 = (-1,0,2,4,8,10) -> (1,1,2,4,8,10)
and
1*1*2*4*8*10 = 640. [Example generalized and reformatted per observation of _Jon E. Schoenfield_ by _Harlan J. Brothers_, Jul 15 2018]
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 84-94.
  • R. K. Guy, Unsolved Problems in Number Theory, A8, A1
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979.
  • G. Polya, Mathematics and Plausible Reasoning, Vol. II, Appendix Princeton UP, 1954.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(n<3, 1, a(n-1)*(ithprime(n)-3))
        end:
    seq(a(n), n=1..21);  # Alois P. Heinz, Nov 19 2021
  • Mathematica
    Join[{1, 1}, Table[Product[Prime[i] - 3, {i, 3, n}], {n, 3, 19}]] (* Harlan J. Brothers, Jul 02 2018 *)
    a[1] = 1; a[2] = 1; a[n_] := a[n] = a[n - 1] (Prime[n] - 3);
    Table[a[n], {n, 19}] (* Harlan J. Brothers, Jul 02 2018 *)
  • PARI
    a(n) = prod(i=3, n, prime(i) - 3); \\ Michel Marcus, Jul 15 2018

Formula

a(1) = a(2) = 1; a(n) = a(n-1) * (prime(n) - 3) for n >= 3. - David A. Corneth, Jul 15 2018

Extensions

Name clarified, offset corrected by David A. Corneth, Jul 15 2018

A061671 Numbers n such that { x +- 2^k : 0 < k < 4 } are primes, where x = 210*n - 105.

Original entry on oeis.org

1, 77, 93, 209, 5197, 7695, 9307, 13442, 13524, 15445, 16192, 28600, 30970, 34228, 36388, 38391, 41625, 50127, 52795, 55546, 69146, 70538, 70642, 70747, 76314, 76642, 90079, 91416, 93496, 94288, 95773, 96415, 101530, 104049, 107559, 118031
Offset: 1

Views

Author

Frank Ellermann, Jun 16 2001

Keywords

Comments

This sequence does not include the sextet (7,11,13,17,19,23). It is a proper subset of A014561 in a certain sense.

Examples

			16057, 16061, 16063, 16067, 16069, 16073 are prime and (16065+105)/210= 77= a(2).
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, conjectures following th. 5

Crossrefs

210 = 7*5*3*2 = A002110(4), cf. A014561.

Programs

  • Mathematica
    Select[Range[1, 1000000], Union[PrimeQ[(210*# - 105) + {-8, -4, -2, 2, 4, 8}]] == {True} &]
    Select[Range[120000],AllTrue[210#-105+{-8,-4,-2,2,4,8},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Feb 05 2019 *)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jun 20 2001 and from Frank Ellermann, Nov 26 2001. Mathematica script from Peter Bertok (peter(AT)bertok.com), Nov 27 2001.
Previous Showing 41-50 of 106 results. Next